Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Hum Mol Genet ; 26(9): 1643-1655, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334757

RESUMEN

Morphogens release and activity can be negatively affected by an impaired glycosaminoglycans (GAGs) turnover and proteoglycans assembly in the extracellular matrix, leading to altered tissue morphogenesis. In this work, we show that loss of Iduronate-2-sulfatase (IDS) activity, affecting GAGs catabolism and responsible for a life-threatening valvulopathy in mucopolysaccharidosis type II (MPSII), triggers early Sonic Hedgehog (Shh) and Wnt/ß-catenin signaling defects, leading to aberrant heart development and atrioventricular valve formation in a zebrafish model. In addition, we consistently found impaired Shh signaling activity and cardiac electrophysiological abnormalities in IDS knockout mice at postnatal stages before any evident massive GAGs accumulation. These results suggest that IDS activity substantially affect cardiac morphogenesis through impaired Shh signaling and document an unexplored role of the enzyme in the fine-tuning of cell signaling pathways.


Asunto(s)
Glicoproteínas/metabolismo , Mucopolisacaridosis II/metabolismo , Animales , Modelos Animales de Enfermedad , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/metabolismo , Iduronato Sulfatasa , Ratones , Ratones Noqueados , Miocardio/citología , Miocardio/metabolismo , Proteoglicanos/metabolismo , Vía de Señalización Wnt , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , beta Catenina
2.
Neurobiol Dis ; 115: 157-166, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29655659

RESUMEN

The fine regulation of intracellular calcium is fundamental for all eukaryotic cells. In neurons, Ca2+ oscillations govern the synaptic development, the release of neurotransmitters and the expression of several genes. Alterations of Ca2+ homeostasis were found to play a pivotal role in neurodegenerative progression. The maintenance of proper Ca2+ signaling in neurons demands the continuous activity of Ca2+ pumps and exchangers to guarantee physiological cytosolic concentration of the cation. The plasma membrane Ca2+ATPases (PMCA pumps) play a key role in the regulation of Ca2+ handling in selected sub-plasma membrane microdomains. Among the four basic PMCA pump isoforms existing in mammals, isoforms 2 and 3 are particularly enriched in the nervous system. In humans, genetic mutations in the PMCA2 gene in association with cadherin 23 mutations have been linked to hearing loss phenotypes, while those occurring in the PMCA3 gene were associated with X-linked congenital cerebellar ataxias. Here we describe a novel missense mutation (V1143F) in the calmodulin binding domain (CaM-BD) of the PMCA2 protein. The mutant pump was present in a patient showing congenital cerebellar ataxia but no overt signs of deafness, in line with the absence of mutations in the cadherin 23 gene. Biochemical and molecular dynamics studies on the mutated PMCA2 have revealed that the V1143F substitution alters the binding of calmodulin to the CaM-BD leading to impaired Ca2+ ejection.


Asunto(s)
Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/genética , Mutación/genética , Neuronas/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Adulto , Señalización del Calcio/fisiología , Calmodulina/metabolismo , Ataxia Cerebelosa/metabolismo , Humanos , Masculino , Neuronas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Unión Proteica/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína
3.
Biochim Biophys Acta ; 1860(6): 1247-55, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26968460

RESUMEN

OBJECTIVES: Deregulation of axonal transport in neurons is emerging as the major cause of many neurodegenerative diseases in human, such as Charcot-Marie-Tooth (CMT) neuropathy. However, little is known about how mitochondria move in vivo and whether cell culture systems truly represent what happens in living animals. Here we describe the generation of a new zebrafish transgenic line that specifically allows to study mitochondrial dynamics in motor neurons and its application to analyse mitochondrial movement in zebrafish models expressing CMT2A causing mutations. METHODS: The Tol2 transposon system was used to generate a transgenic zebrafish line expressing the photoconvertible fluorescent protein Kaede in mitochondria of motor neurons. Mitochondrial shape and movement were monitored by time-lapse confocal live imaging and measured by kymograph analysis. The effects of two well-known CMT causing mutations, L76P and R94Q substitutions in MFN2, were then investigated with the same methods. RESULTS: We generated the transgenic zebrafish Tg(hb9:MTS-Kaede) line with genetically labelled mitochondria in motor neurons. Kaede protein was correctly and stably targeted to mitochondrial matrix while retaining its photoconvertibility, thus qualifying this model for in vivo studies. Expression of the L76P and R94Q mutations reduced mitochondrial movement in axons and altered mitochondrial distribution in distinct ways. CONCLUSIONS AND GENERAL SIGNIFICANCE: These findings confirm previously published data obtained in cell cultures and strengthen the hypothesis of different mechanism of action of the two MFN2 mutations. Considering the number of neurodegenerative diseases associated to mitochondrial dynamics, the Tg(hb9:MTS-Kaede) zebrafish line is a promising model to study in vivo alterations of mitochondrial transport underlying human diseases.


Asunto(s)
Transporte Axonal/fisiología , Mitocondrias/fisiología , Animales , Animales Modificados Genéticamente , Enfermedad de Charcot-Marie-Tooth/genética , GTP Fosfohidrolasas/fisiología , Dinámicas Mitocondriales , Proteínas Mitocondriales/fisiología , Mutación , Pez Cebra
4.
Biochem Biophys Res Commun ; 483(4): 1020-1030, 2017 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-27581196

RESUMEN

The selective cell loss in the ventral component of the substantia nigra pars compacta and the presence of alpha-synuclein (α-syn)-rich intraneuronal inclusions called Lewy bodies are the pathological hallmarks of Parkinson's disease (PD), the most common motor system disorder whose aetiology remains largely elusive. Although most cases of PD are idiopathic, there are rare familial forms of the disease that can be traced to single gene mutations that follow Mendelian inheritance pattern. The study of several nuclear encoded proteins whose mutations are linked to the development of autosomal recessive and dominant forms of familial PD enhanced our understanding of biochemical and cellular mechanisms contributing to the disease and suggested that many signs of neurodegeneration result from compromised mitochondrial function. Here we present an overview of the current understanding of PD-related mitochondrial dysfunction including defects in bioenergetics and Ca2+ homeostasis, mitochondrial DNA mutations, altered mitochondrial dynamics and autophagy. We emphasize, in particular, the convergence of many "apparently" different pathways towards a common route involving mitochondria. Understanding whether mitochondrial dysfunction in PD represents the cause or the consequence of the disease is challenging and will help to define the pathogenic processes at the basis of the PD onset and progression.


Asunto(s)
Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Autofagia , Calcio/metabolismo , ADN Mitocondrial/genética , Homeostasis , Humanos , Mutación , Enfermedad de Parkinson/patología
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3303-3312, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28807751

RESUMEN

The neuron-restricted isoform 3 of the plasma membrane Ca2+ ATPase plays a major role in the regulation of Ca2+ homeostasis in the brain, where the precise control of Ca2+ signaling is a necessity. Several function-affecting genetic mutations in the PMCA3 pump associated to X-linked congenital cerebellar ataxias have indeed been described. Interestingly, the presence of co-occurring mutations in additional genes suggest their synergistic action in generating the neurological phenotype as digenic modulators of the role of PMCA3 in the pathologies. Here we report a novel PMCA3 mutation (G733R substitution) in the catalytic P-domain of the pump in a patient affected by non-progressive ataxia, muscular hypotonia, dysmetria and nystagmus. Biochemical studies of the pump have revealed impaired ability to control cellular Ca2+ handling both under basal and under stimulated conditions. A combined analysis by homology modeling and molecular dynamics have revealed a role for the mutated residue in maintaining the correct 3D configuration of the local structure of the pump. Mutation analysis in the patient has revealed two additional function-impairing compound heterozygous missense mutations (R123Q and G214S substitution) in phosphomannomutase 2 (PMM2), a protein that catalyzes the isomerization of mannose 6-phosphate to mannose 1-phosphate. These mutations are known to be associated with Type Ia congenital disorder of glycosylation (PMM2-CDG), the most common group of disorders of N-glycosylation. The findings highlight the association of PMCA3 mutations to cerebellar ataxia and strengthen the possibility that PMCAs act as digenic modulators in Ca2+-linked pathologies.


Asunto(s)
Ataxia/genética , Ataxia/metabolismo , Trastornos Congénitos de Glicosilación/metabolismo , Mutación Missense , Fosfotransferasas (Fosfomutasas)/deficiencia , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Calcio/metabolismo , Preescolar , Trastornos Congénitos de Glicosilación/diagnóstico por imagen , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Glicosilación , Células HeLa , Humanos , Masculino , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo
6.
Cells ; 12(3)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36766721

RESUMEN

Mutations in presenilin 2 (PS2) have been causally linked to the development of inherited Alzheimer's disease (AD). Besides its role as part of the γ-secretase complex, mammalian PS2 is also involved, as an individual protein, in a growing number of cell processes, which result altered in AD. To gain more insight into PS2 (dys)functions, we have generated a presenilin2 (psen2) knockout zebrafish line. We found that the absence of the protein does not markedly influence Notch signaling at early developmental stages, suggesting a Psen2 dispensable role in the γ-secretase-mediated Notch processing. Instead, loss of Psen2 induces an exaggerated locomotor response to stimulation in fish larvae, a reduced number of ER-mitochondria contacts in zebrafish neurons, and an increased basal autophagy. Moreover, the protein is involved in mitochondrial axonal transport, since its acute downregulation reduces in vivo organelle flux in zebrafish sensory neurons. Importantly, the expression of a human AD-linked mutant of the protein increases this vital process. Overall, our results confirm zebrafish as a good model organism for investigating PS2 functions in vivo, representing an alternative tool for the characterization of new AD-linked defective cell pathways and the testing of possible correcting drugs.


Asunto(s)
Enfermedad de Alzheimer , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Mamíferos/metabolismo
7.
Nat Commun ; 11(1): 6069, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247103

RESUMEN

Membrane contact sites between virtually any known organelle have been documented and, in the last decades, their study received momentum due to their importance for fundamental activities of the cell and for the subtle comprehension of many human diseases. The lack of tools to finely image inter-organelle proximity hindered our understanding on how these subcellular communication hubs mediate and regulate cell homeostasis. We develop an improved and expanded palette of split-GFP-based contact site sensors (SPLICS) for the detection of single and multiple organelle contact sites within a scalable distance range. We demonstrate their flexibility under physiological conditions and in living organisms.


Asunto(s)
Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Orgánulos/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Neuronas/metabolismo , Ratas Sprague-Dawley , Pez Cebra/metabolismo
8.
Cell Death Dis ; 10(11): 857, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719530

RESUMEN

Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by dopaminergic neuronal loss that initiates in the substantia nigra pars compacta and by the formation of intracellular inclusions mainly constituted by aberrant α-synuclein (α-syn) deposits known as Lewy bodies. Most cases of PD are sporadic, but about 10% are familial, among them those caused by mutations in SNCA gene have an autosomal dominant transmission. SNCA encodes α-syn, a small 140-amino acids protein that, under physiological conditions, is mainly localized at the presynaptic terminals. It is prevalently cytosolic, but its presence has been reported in the nucleus, in the mitochondria and, more recently, in the mitochondria-associated ER membranes (MAMs). Whether different cellular localizations may reflect specific α-syn activities is presently unclear and its action at mitochondrial level is still a matter of debate. Mounting evidence supports a role for α-syn in several mitochondria-derived activities, among which maintenance of mitochondrial morphology and modulation of complex I and ATP synthase activity. α-syn has been proposed to localize at the outer membrane (OMM), in the intermembrane space (IMS), at the inner membrane (IMM) and in the mitochondrial matrix, but a clear and comparative analysis of the sub-mitochondrial localization of WT and mutant α-syn is missing. Furthermore, the reasons for this spread sub-mitochondrial localization under physiological and pathological circumstances remain elusive. In this context, we decided to selectively monitor the sub-mitochondrial distribution of the WT and PD-related α-syn mutants A53T and A30P by taking advantage from a bimolecular fluorescence complementation (BiFC) approach. We also investigated whether cell stress could trigger α-syn translocation within the different mitochondrial sub-compartments and whether PD-related mutations could impinge on it. Interestingly, the artificial targeting of α-syn WT (but not of the mutants) to the mitochondrial matrix impacts on ATP production, suggesting a potential role within this compartment.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Mitocondrias/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/genética , Citosol/metabolismo , Citosol/patología , Dopamina/genética , Dopamina/metabolismo , Neuronas Dopaminérgicas/patología , Expresión Génica/genética , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas Mutantes/genética , Enfermedad de Parkinson/patología , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Terminales Presinápticos/metabolismo
9.
Cells ; 8(9)2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547305

RESUMEN

Familial Parkinson's disease (PD) is associated with duplication or mutations of α-synuclein gene, whose product is a presynaptic cytosolic protein also found in mitochondria and in mitochondrial-associated ER membranes. We have originally shown the role of α-syn as a modulator of the ER-mitochondria interface and mitochondrial Ca2+ transients, suggesting that, at mild levels of expression, α-syn sustains cell metabolism. Here, we investigated the possibility that α-syn action on ER-mitochondria tethering could be compromised by the presence of PD-related mutations. The clarification of this aspect could contribute to elucidate key mechanisms underlying PD. The findings reported so far are not consistent, possibly because of the different methods used to evaluate ER-mitochondria connectivity. Here, the effects of the PD-related α-syn mutations A53T and A30P on ER-mitochondria relationship were investigated in respect to Ca2+ handling and mitochondrial function using a newly generated SPLICS sensor and aequorin-based Ca2+measurements. We provided evidence that A53T and A30P amino acid substitution does not affect the ability of α-syn to enhance ER/mitochondria tethering and mitochondrial Ca2+ transients, but that this action was lost as soon as a high amount of TAT-delivered A53T and A30P α-syn mutants caused the redistribution of α-syn from cytoplasm to foci. Our results suggest a loss of function mechanism and highlight a possible connection between α-syn and ER-mitochondria Ca2+ cross-talk impairment to the pathogenesis of PD.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , Células HeLa , Humanos , Mutación , Enfermedad de Parkinson/patología
10.
Front Neurosci ; 12: 388, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29930495

RESUMEN

The presynaptic protein alpha-synuclein (α-syn) is unequivocally linked to the development of Parkinson's disease (PD). Not only it is the major component of amyloid fibrils found in Lewy bodies but mutations and duplication/triplication in its gene are responsible for the onset of familial autosomal dominant forms of PD. Nevertheless, the precise mechanisms leading to neuronal degeneration are not fully understood. Several lines of evidence suggest that impaired autophagy clearance and mitochondrial dysfunctions such as bioenergetics and calcium handling defects and alteration in mitochondrial morphology might play a pivotal role in the etiology and progression of PD, and indicate the intriguing possibility that α-syn could be involved in the control of mitochondrial function both in physiological and pathological conditions. In favor of this, it has been shown that a fraction of cellular α-syn can selectively localize to mitochondrial sub-compartments upon specific stimuli, highlighting possible novel routes for α-syn action. A plethora of mitochondrial processes, including cytochrome c release, calcium homeostasis, control of mitochondrial membrane potential and ATP production, is directly influenced by α-syn. Eventually, α-syn localization within mitochondria may also account for its aggregation state, making the α-syn/mitochondria intimate relationship a potential key for the understanding of PD pathogenesis. Here, we will deeply survey the recent literature in the field by focusing our attention on the processes directly controlled by α-syn within mitochondrial sub-compartments and its potential partners providing possible hints for future therapeutic targets.

11.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3247-3256, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30006151

RESUMEN

Intracellular neurofibrillary tangles (NFT) composed by tau and extracellular amyloid beta (Aß) plaques accumulate in Alzheimer's disease (AD) and contribute to neuronal dysfunction. Mitochondrial dysfunction and neurodegeneration are increasingly considered two faces of the same coin and an early pathological event in AD. Compelling evidence indicates that tau and mitochondria are closely linked and suggests that tau-dependent modulation of mitochondrial functions might be a trigger for the neurodegeneration process; however, whether this occurs either directly or indirectly is not clear. Furthermore, whether tau influences cellular Ca2+ handling and ER-mitochondria cross-talk is yet to be explored. Here, by focusing on wt tau, either full-length (2N4R) or the caspase 3-cleaved form truncated at the C-terminus (2N4RΔC20), we examined the above-mentioned aspects. Using new genetically encoded split-GFP-based tools and organelle-targeted aequorin probes, we assessed: i) tau distribution within the mitochondrial sub-compartments; ii) the effect of tau on the short- (8-10 nm) and the long- (40-50 nm) range ER-mitochondria interactions; and iii) the effect of tau on cytosolic, ER and mitochondrial Ca2+ homeostasis. Our results indicate that a fraction of tau is found at the outer mitochondrial membrane (OMM) and within the inner mitochondrial space (IMS), suggesting a potential tau-dependent regulation of mitochondrial functions. The ER Ca2+ content and the short-range ER-mitochondria interactions were selectively affected by the expression of the caspase 3-cleaved 2N4RΔC20 tau, indicating that Ca2+ mis-handling and defects in the ER-mitochondria communications might be an important pathological event in tau-related dysfunction and thereby contributing to neurodegeneration. Finally, our data provide new insights into the molecular mechanisms underlying tauopathies.


Asunto(s)
Calcio/metabolismo , Caspasas/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Citosol/metabolismo , Células HeLa , Humanos , Ratones , Neuronas/metabolismo , Proteínas tau/genética
12.
Cell Death Differ ; 25(6): 1131-1145, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29229997

RESUMEN

Contact sites are discrete areas of organelle proximity that coordinate essential physiological processes across membranes, including Ca2+ signaling, lipid biosynthesis, apoptosis, and autophagy. However, tools to easily image inter-organelle proximity over a range of distances in living cells and in vivo are lacking. Here we report a split-GFP-based contact site sensor (SPLICS) engineered to fluoresce when organelles are in proximity. Two SPLICS versions efficiently measured narrow (8-10 nm) and wide (40-50 nm) juxtapositions between endoplasmic reticulum and mitochondria, documenting the existence of at least two types of contact sites in human cells. Narrow and wide ER-mitochondria contact sites responded differently to starvation, ER stress, mitochondrial shape modifications, and changes in the levels of modulators of ER-mitochondria juxtaposition. SPLICS detected contact sites in soma and axons of D. rerio Rohon Beard (RB) sensory neurons in vivo, extending its use to analyses of organelle juxtaposition in the whole animal.


Asunto(s)
Apoptosis , Autofagia , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Retículo Endoplásmico/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitocondrias/genética , Pez Cebra
13.
Curr Biol ; 28(3): 369-382.e6, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29395920

RESUMEN

The mitochondrial translocase of the outer membrane (TOM) is a protein complex that is essential for the post-translational import of nuclear-encoded mitochondrial proteins. Among its subunits, TOM70 and TOM20 are only transiently associated with the core complex, suggesting their possible additional roles within the outer mitochondrial membrane (OMM). Here, by using different mammalian cell lines, we demonstrate that TOM70, but not TOM20, clusters in distinct OMM foci, frequently overlapping with sites in which the endoplasmic reticulum (ER) contacts mitochondria. Functionally, TOM70 depletion specifically impairs inositol trisphosphates (IP3)-linked ER to mitochondria Ca2+ transfer. This phenomenon is dependent on the capacity of TOM70 to interact with IP3-receptors and favor their functional recruitment close to mitochondria. Importantly, the reduced constitutive Ca2+ transfer to mitochondria, observed in TOM70-depleted cells, dampens mitochondrial respiration, affects cell bioenergetics, induces autophagy, and inhibits proliferation. Our data reveal a hitherto unexpected role for TOM70 in pro-survival ER-mitochondria communication, reinforcing the view that the ER-mitochondria signaling platform is a key regulator of cell fate.


Asunto(s)
Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/metabolismo , Receptores de Superficie Celular/genética , Animales , Retículo Endoplásmico/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA