Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Bacteriol ; 190(6): 1956-65, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18203834

RESUMEN

CsrRS (or CovRS) is a two-component regulatory system that controls expression of multiple virulence factors in the important human pathogen group B Streptococcus (GBS). We now report global gene expression studies in GBS strains 2603V/R and 515 and their isogenic csrR and csrS mutants. Together with data reported previously for strain NEM316, the results reveal a conserved 39-gene CsrRS regulon. In vitro phosphorylation-dependent binding of recombinant CsrR to promoter regions of both positively and negatively regulated genes suggests that direct binding of CsrR can mediate activation as well as repression of target gene expression. Distinct patterns of gene regulation in csrR versus csrS mutants in strain 2603V/R compared to 515 were associated with different hierarchies of relative virulence of wild-type, csrR, and csrS mutants in murine models of systemic infection and septic arthritis. We conclude that CsrRS regulates a core group of genes including important virulence factors in diverse strains of GBS but also displays marked variability in the repertoire of regulated genes and in the relative effects of CsrS signaling on CsrR-mediated gene regulation. Such variation is likely to play an important role in strain-specific adaptation of GBS to particular host environments and pathogenic potential in susceptible hosts.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Regulón/genética , Streptococcus agalactiae/genética , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Ensayo de Cambio de Movilidad Electroforética , Perfilación de la Expresión Génica , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/patogenicidad , Virulencia/genética
2.
J Med Microbiol ; 56(Pt 7): 947-955, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17577061

RESUMEN

Group B Streptococcus (GBS) resistant to erythromycin and clindamycin has been isolated with increasing frequency since the mid-1990s. This work studied GBS isolates from three US cities to determine the genetic basis of the macrolide resistance phenotype. ermB genes were amplified from five isolates collected in Boston, Pittsburgh and Seattle from infant and adult sources. Gene-walking methods were used to determine the chromosomal location of ermB and to identify associated genes. Southern mapping and random amplified polymorphic DNA (RAPD) analyses were used to distinguish the isolates. The ermB gene was present on the chromosome within a composite Tn917/Tn916-like transposon similar to one identified in Streptococcus pneumoniae. Four strains from Boston and Pittsburgh were serotype V and identical by Southern hybridization and RAPD analysis. The Seattle isolate was serotype Ib, with different patterns on RAPD analysis and Southern mapping. The composite transposon was integrated at an identical chromosomal site in all five isolates. The presence of this composite transposon in both GBS and pneumococci suggests that ermB-mediated macrolide resistance in streptococci may be due to the horizontal transfer of a mobile transposable element, and raises concern for further dissemination of high-grade erythromycin and clindamycin resistance among streptococcal species.


Asunto(s)
Antibacterianos/farmacología , Clindamicina/farmacología , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana/genética , Eritromicina/farmacología , Streptococcus agalactiae/efectos de los fármacos , Adulto , Proteínas Bacterianas/genética , Southern Blotting , Paseo de Cromosoma , Genes Bacterianos , Humanos , Recién Nacido , Metiltransferasas/genética , Datos de Secuencia Molecular , Técnica del ADN Polimorfo Amplificado Aleatorio , Análisis de Secuencia de ADN , Serotipificación , Streptococcus agalactiae/genética
3.
J Bacteriol ; 187(3): 1105-13, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15659687

RESUMEN

Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.


Asunto(s)
Streptococcus agalactiae/patogenicidad , Virulencia/fisiología , Proteínas Bacterianas/genética , Genes Bacterianos , Humanos , Mutagénesis , Plásmidos/genética , Pliegue de Proteína , Infecciones Estreptocócicas , Transcripción Genética
4.
Infect Immun ; 73(5): 3096-103, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15845517

RESUMEN

Group B Streptococcus (GBS) is an important pathogen of neonates, pregnant women, and immunocompromised individuals. GBS isolates associated with human infection produce one of nine antigenically distinct capsular polysaccharides which are thought to play a key role in virulence. A comparison of GBS polysaccharide structures of all nine known GBS serotypes together with the predicted amino acid sequences of the proteins that direct their synthesis suggests that the evolution of serotype-specific capsular polysaccharides has proceeded through en bloc replacement of individual glycosyltransferase genes with DNA sequences that encode enzymes with new linkage specificities. We found striking heterogeneity in amino acid sequences of synthetic enzymes with very similar functions, an observation that supports horizontal gene transfer rather than stepwise mutagenesis as a mechanism for capsule variation. Eight of the nine serotypes appear to be closely related both structurally and genetically, whereas serotype VIII is more distantly related. This similarity in polysaccharide structure strongly suggests that the evolutionary pressure toward antigenic variation exerted by acquired immunity is counterbalanced by a survival advantage conferred by conserved structural motifs of the GBS polysaccharides.


Asunto(s)
Cápsulas Bacterianas/química , Proteínas Bacterianas/genética , Variación Genética , Streptococcus agalactiae/clasificación , Cápsulas Bacterianas/biosíntesis , Cápsulas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Carbohidratos , Transferencia de Gen Horizontal , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Recombinación Genética , Análisis de Secuencia de ADN , Serotipificación , Infecciones Estreptocócicas , Streptococcus agalactiae/genética
5.
Proc Natl Acad Sci U S A ; 102(39): 13950-5, 2005 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-16172379

RESUMEN

The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.


Asunto(s)
Genoma Bacteriano , Streptococcus agalactiae/clasificación , Streptococcus agalactiae/genética , Secuencia de Aminoácidos , Cápsulas Bacterianas/genética , Secuencia de Bases , Expresión Génica , Genes Bacterianos , Variación Genética , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Streptococcus agalactiae/patogenicidad , Virulencia/genética
6.
J Bacteriol ; 186(3): 654-60, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14729690

RESUMEN

We designed a selection strategy for the isolation of Escherichia coli mutants exhibiting enhanced protein disulfide isomerase activity. The folding of a variant of tissue plasminogen activator (v-tPA), a protein containing nine disulfide bonds, in the bacterial periplasm is completely dependent on the level of disulfide isomerase activity of the cell. Mutations that increase this activity mediate the formation of catalytically active v-tPA, which in turn cleaves a p-aminobenzoic acid (PABA)-peptide adduct to release free PABA and thus allows the growth of an auxotrophic strain. Following chemical mutagenesis, a total of eight E. coli mutants exhibiting significantly higher disulfide isomerization activity, not only with v-tPA but also with two other unrelated protein substrates, were isolated. This phenotype resulted from significantly increased expression of the bacterial disulfide isomerase DsbC. In seven of the eight mutants, the upregulation of DsbC was found to be related to defects in RNA processing by RNase E, the rne gene product. Specifically, the genetic lesions in five mutants were shown to be allelic to rne, while an additional two mutants exhibited impaired RNase E activity due to lesions in other loci. The importance of mRNA stability on the expression of DsbC is underscored by the short half-life of the dsbC transcript, which was found to be only 0.8 min at 37 degrees C in wild-type cells but was two- to threefold longer in some of the stronger mutants. These results (i) confirm the central role of DsbC in disulfide bond isomerization in the bacterial periplasm and (ii) suggest a critical role for RNase E in regulating DsbC expression.


Asunto(s)
Disulfuros/metabolismo , Endorribonucleasas/fisiología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína Disulfuro Isomerasas/genética , ARN Mensajero/metabolismo , Endorribonucleasas/genética , Escherichia coli/genética , Isomerismo
7.
Proc Natl Acad Sci U S A ; 100(4): 1966-71, 2003 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-12569171

RESUMEN

Streptococcus pneumoniae is one of the leading causes of invasive bacterial disease worldwide. Fragments of the cell wall and the cytolytic toxin pneumolysin have been shown to contribute substantially to inflammatory damage, although the interactions between pneumococcal components and host-cell structures have not been elucidated completely. Results of a previous study indicated that cell-wall components of pneumococci are recognized by Toll-like receptor (TLR)2 but suggested that pneumolysin induces inflammatory events independently of this receptor. In this study we tested the hypothesis that pneumolysin interacts with surface proteins of the TLR family other than TLR2. We found that pneumolysin stimulates tumor necrosis factor-alpha and IL-6 release in wild-type macrophages but not in macrophages from mice with a targeted deletion of the cytoplasmic TLR-adapter molecule myeloid differentiation factor 88, suggesting the involvement of the TLRs in pneumolysin recognition. Purified pneumolysin synergistically activated macrophage responses together with preparations of pneumococcal cell walls or staphylococcal peptidoglycan, which are known to activate TLR2. Furthermore, when compared with wild-type macrophages, macrophages from mice that carry a spontaneous mutation in TLR4 (P712H) were hyporesponsive to both pneumolysin alone and the combination of pneumolysin with pneumococcal cell walls. Finally, these TLR4-mutant mice were significantly more susceptible to lethal infection after intranasal colonization with pneumolysin-positive pneumococci than were control mice. We conclude that the interaction of pneumolysin with TLR4 is critically involved in the innate immune response to pneumococcus.


Asunto(s)
Proteínas de Drosophila , Glicoproteínas de Membrana/metabolismo , Infecciones Neumocócicas/metabolismo , Receptores de Superficie Celular/metabolismo , Estreptolisinas/metabolismo , Animales , Proteínas Bacterianas , Secuencia de Bases , Línea Celular , Cricetinae , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Citometría de Flujo , Macrófagos Peritoneales/inmunología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C3H , Mutación , Infecciones Neumocócicas/inmunología , Receptores de Superficie Celular/genética , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Receptores Toll-Like
8.
Proc Natl Acad Sci U S A ; 99(19): 12391-6, 2002 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-12200547

RESUMEN

The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the sequenced serotype V strain 2603 V/R and 19 S. agalactiae strains from several serotypes using whole-genome microarrays, revealed the genetic heterogeneity among S. agalactiae strains, even of the same serotype, and provided insights into the evolution of virulence mechanisms.


Asunto(s)
Genoma Bacteriano , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidad , Secuencia de Aminoácidos , Evolución Biológica , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Serotipificación , Especificidad de la Especie , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/clasificación , Streptococcus pneumoniae/genética , Streptococcus pyogenes/genética , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA