Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(6): e26678, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647001

RESUMEN

Functional gradient (FG) analysis represents an increasingly popular methodological perspective for investigating brain hierarchical organization but whether and how network hierarchy changes concomitant with functional connectivity alterations in multiple sclerosis (MS) has remained elusive. Here, we analyzed FG components to uncover possible alterations in cortical hierarchy using resting-state functional MRI (rs-fMRI) data acquired in 122 MS patients and 97 healthy control (HC) subjects. Cortical hierarchy was assessed by deriving regional FG scores from rs-fMRI connectivity matrices using a functional parcellation of the cerebral cortex. The FG analysis identified a primary (visual-to-sensorimotor) and a secondary (sensory-to-transmodal) component. Results showed a significant alteration in cortical hierarchy as indexed by regional changes in FG scores in MS patients within the sensorimotor network and a compression (i.e., a reduced standard deviation across all cortical parcels) of the sensory-transmodal gradient axis, suggesting disrupted segregation between sensory and cognitive processing. Moreover, FG scores within limbic and default mode networks were significantly correlated ( ρ = 0.30 $$ \rho =0.30 $$ , p < .005 after Bonferroni correction for both) with the symbol digit modality test (SDMT) score, a measure of information processing speed commonly used in MS neuropsychological assessments. Finally, leveraging supervised machine learning, we tested the predictive value of network-level FG features, highlighting the prominent role of the FG scores within the default mode network in the accurate prediction of SDMT scores in MS patients (average mean absolute error of 1.22 ± 0.07 points on a hold-out set of 24 patients). Our work provides a comprehensive evaluation of FG alterations in MS, shedding light on the hierarchical organization of the MS brain and suggesting that FG connectivity analysis can be regarded as a valuable approach in rs-fMRI studies across different MS populations.


Asunto(s)
Corteza Cerebral , Conectoma , Imagen por Resonancia Magnética , Esclerosis Múltiple , Red Nerviosa , Humanos , Masculino , Femenino , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Conectoma/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/patología , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología
2.
J Neural Transm (Vienna) ; 131(8): 917-929, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38661818

RESUMEN

BACKGROUND: In this study, we aimed at investigating the possible association of urinary symptoms with whole-brain MRI resting-state functional connectivity (FC) alterations from distinct striatal subregions in a large cohort of early PD patients. METHODS: Seventy-nine drug-naive PD patients (45 PD-urinary+/34 PD-urinary-) and 38 healthy controls (HCs) were consecutively enrolled. Presence/absence of urinary symptoms were assessed by means of the Nonmotor Symptom Scale - domain 7. Using an a priori connectivity-based domain-specific parcellation, we defined three ROIs (per each hemisphere) for different striatal functional subregions (sensorimotor, limbic and cognitive) from which seed-based FC voxel-wise analyses were conducted over the whole brain. RESULTS: Compared to PD-urinary-, PD-urinary+ patients showed increased FC between striatal regions and motor and premotor/supplementary motor areas as well as insula/anterior dorsolateral PFC. Compared to HC, PD-urinary+ patients presented decreased FC between striatal regions and parietal, insular and cingulate cortices. CONCLUSIONS: Our findings revealed a specific pattern of striatal FC alteration in PD patients with urinary symptoms, potentially associated to altered stimuli perception and sensorimotor integration even in the early stages. These results may potentially help clinicians to design more effective and tailored rehabilitation and neuromodulation protocols for PD patients.


Asunto(s)
Cuerpo Estriado , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Anciano , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/fisiopatología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen
3.
J Neural Transm (Vienna) ; 130(1): 43-51, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36474090

RESUMEN

Epidemiological studies have shown that Parkinson's disease (PD) patients with probable REM sleep behavior disorder (pRBD) present an increased risk of worse cognitive progression over the disease course. The aim of this study was to investigate, using resting-state functional MRI (RS-fMRI), the functional connectivity (FC) changes associated with the presence of pRBD in a cohort of newly diagnosed, drug-naive and cognitively unimpaired PD patients compared to healthy controls (HC). Fifty-six drug-naïve patients (25 PD-pRBD+ and 31 PD-pRBD-) and 23 HC underwent both RS-fMRI and clinical assessment. Single-subject and group-level independent component analysis was used to analyze intra- and inter-network FC differences within the major large-scale neurocognitive networks, namely the default mode (DMN), frontoparietal (FPN), salience (SN) and executive-control (ECN) networks. Widespread FC changes were found within the most relevant neurocognitive networks in PD patients compared to HC. Moreover, PD-pRBD+ patients showed abnormal intrinsic FC within the DMN, ECN and SN compared to PD-pRBD-. Finally, PD-pRBD+ patients showed functional decoupling between left and right FPN. In the present study, we revealed that FC changes within the most relevant neurocognitive networks are already detectable in early drug-naïve PD patients, even in the absence of clinical overt cognitive impairment. These changes are even more evident in PD patients with RBD, potentially leading to profound impairment in cognitive processing and cognitive/behavioral integration, as well as to fronto-striatal maladaptive compensatory mechanisms.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Mapeo Encefálico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/complicaciones , Imagen por Resonancia Magnética , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen
4.
Neural Plast ; 2023: 6496539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37159825

RESUMEN

The structural connectivity from the primary olfactory cortex to the main secondary olfactory areas was previously reported as relatively increased in the medial orbitofrontal cortex in a cohort of 27 recently SARS-CoV-2-infected (COV+) subjects, of which 23/27 had clinically confirmed olfactory loss, compared to 18 control (COV-) normosmic subjects, who were not previously infected. To complement this finding, here we report the outcome of an identical high angular resolution diffusion MRI analysis on follow-up data sets collected in 18/27 COV+ subjects (10 males, mean age ± SD: 38.7 ± 8.1 years) and 10/18 COV- subjects (5 males, mean age ± SD: 33.1 ± 3.6 years) from the previous samples who repeated both the olfactory functional assessment and the MRI examination after ~1 year. By comparing the newly derived subgroups, we observed that the increase in the structural connectivity index of the medial orbitofrontal cortex was not significant at follow-up, despite 10/18 COV+ subjects were still found hyposmic after ~1 year from SARS-CoV-2 infection. We concluded that the relative hyperconnectivity of the olfactory cortex to the medial orbitofrontal cortex could be, at least in some cases, an acute or reversible phenomenon linked to the recent SARS-CoV-2 infection with associated olfactory loss.


Asunto(s)
COVID-19 , Masculino , Humanos , Estudios de Seguimiento , SARS-CoV-2 , Encéfalo/diagnóstico por imagen , Lóbulo Frontal
5.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298586

RESUMEN

Neurodegeneration is a multifactorial process that involves multiple mechanisms. Examples of neurodegenerative diseases are Parkinson's disease, multiple sclerosis, Alzheimer's disease, prion diseases such as Creutzfeldt-Jakob's disease, and amyotrophic lateral sclerosis. These are progressive and irreversible pathologies, characterized by neuron vulnerability, loss of structure or function of neurons, and even neuron demise in the brain, leading to clinical, functional, and cognitive dysfunction and movement disorders. However, iron overload can cause neurodegeneration. Dysregulation of iron metabolism associated with cellular damage and oxidative stress is reported as a common event in several neurodegenerative diseases. Uncontrolled oxidation of membrane fatty acids triggers a programmed cell death involving iron, ROS, and ferroptosis, promoting cell death. In Alzheimer's disease, the iron content in the brain is significantly increased in vulnerable regions, resulting in a lack of antioxidant defenses and mitochondrial alterations. Iron interacts with glucose metabolism reciprocally. Overall, iron metabolism and accumulation and ferroptosis play a significant role, particularly in the context of diabetes-induced cognitive decline. Iron chelators improve cognitive performance, meaning that brain iron metabolism control reduces neuronal ferroptosis, promising a novel therapeutic approach to cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ferroptosis , Enfermedades Neurodegenerativas , Humanos , Hierro/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo
6.
J Headache Pain ; 24(1): 71, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37322466

RESUMEN

INTRODUCTION: Advanced neuroimaging techniques have extensively contributed to elucidate the complex mechanisms underpinning the pathophysiology of migraine, a neurovascular disorder characterized by episodes of headache associated with a constellation of non-pain symptoms. The present manuscript, summarizing the most recent progresses of the arterial spin labelling (ASL) MRI techniques and the most significant findings from ASL studies conducted in migraine, is aimed to clarify how ASL investigations are contributing to the evolving insight on migraine pathophysiology and their putative role in migraine clinical setting. ASL techniques, allowing to quantitatively demonstrate changes in cerebral blood flow (CBF) both during the attacks and in the course of interictal period, could represent the melting point between advanced neuroimaging investigations, conducted with pure scientific purposes, and conventional neuroimaging approaches, employed in the diagnostic decision-making processes. MAIN BODY: Converging ASL evidences have demonstrated that abnormal CBF, exceeding the boundaries of a single vascular territory, with biphasic trend dominated by an initial hypoperfusion (during the aura phenomenon but also in the first part of the headache phase) followed by hyperperfusion, characterizes migraine with aura attack and can represent a valuable clinical tool in the differential diagnosis from acute ischemic strokes and epileptic seizures. Studies conducted during migraine without aura attacks are converging to highlight the involvement of dorsolateral pons and hypothalamus in migraine pathophysiology, albeit not able to disentangle their role as "migraine generators" from mere attack epiphenomenon. Furthermore, ASL findings tend to support the presence of perfusion abnormalities in brain regions known to be involved in aura ignition and propagation as well as in areas involved in multisensory processing, in both patients with migraine with aura and migraine without aura. CONCLUSION: Although ASL studies have dramatically clarified quality and timing of perfusion abnormalities during migraine with aura attacks, the same cannot be said for perfusion changes during migraine attacks without aura and interictal periods. Future studies with more rigorous methodological approaches in terms of study protocol, ASL technique and sample selection and size are mandatory to exploit the possibility of better understanding migraine pathophysiology and identifying neuroimaging biomarkers of each migraine phase in different migraine phenotypes.


Asunto(s)
Migraña con Aura , Migraña sin Aura , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo , Cefalea , Circulación Cerebrovascular/fisiología
7.
Hum Brain Mapp ; 43(5): 1548-1560, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35083823

RESUMEN

To address the impact of COVID-19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS-CoV-2 infected subjects with persisting olfactory impairment (hyposmia). Twenty-seven previously SARS-CoV-2 infected subjects (10 males, mean age ± SD 40.0 ± 7.6 years) with clinically confirmed COVID-19 related hyposmia, and eighteen healthy, never SARS-CoV-2 infected, normosmic subjects (6 males, mean age ± SD 36.0 ± 7.1 years), were recruited in a 3 Tesla MRI study including high angular resolution diffusion and resting-state functional MRI acquisitions. Specialized metrics of structural and functional connectivity were derived from a standard parcellation of olfactory brain areas and a previously validated graph-theoretic model of the human olfactory functional network. These metrics were compared between groups and correlated to a clinical index of olfactory impairment. On the scanning day, all subjects were virus-free and cognitively unimpaired. Compared to control, both structural and functional connectivity metrics were found significantly increased in previously SARS-CoV-2 infected subjects. Greater residual olfactory impairment was associated with more segregated processing within regions more functionally connected to the anterior piriform cortex. An increased neural connectivity within the olfactory cortex was associated with a recent SARS-CoV-2 infection when the olfactory loss was a residual COVID-19 symptom. The functional connectivity of the anterior piriform cortex, the largest cortical recipient of afferent fibers from the olfactory bulb, accounted for the inter-individual variability in the sensory impairment. Albeit preliminary, these findings could feature a characteristic brain connectivity response in the presence of COVID-19 related residual hyposmia.


Asunto(s)
Anosmia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , COVID-19/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Olfato/fisiología , Adulto , Anosmia/etiología , COVID-19/complicaciones , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
8.
Mov Disord ; 37(6): 1272-1281, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403258

RESUMEN

BACKGROUND: Differentiating progressive supranuclear palsy-parkinsonism (PSP-P) from Parkinson's disease (PD) is clinically challenging. OBJECTIVE: This study aimed to develop an automated Magnetic Resonance Parkinsonism Index 2.0 (MRPI 2.0) algorithm to distinguish PSP-P from PD and to validate its diagnostic performance in two large independent cohorts. METHODS: We enrolled 676 participants: a training cohort (n = 346; 43 PSP-P, 194 PD, and 109 control subjects) from our center and an independent testing cohort (n = 330; 62 PSP-P, 171 PD, and 97 control subjects) from an international research group. We developed a new in-house algorithm for MRPI 2.0 calculation and assessed its performance in distinguishing PSP-P from PD and control subjects in both cohorts using receiver operating characteristic curves. RESULTS: The automated MRPI 2.0 showed excellent performance in differentiating patients with PSP-P from patients with PD and control subjects both in the training cohort (area under the receiver operating characteristic curve [AUC] = 0.93 [95% confidence interval, 0.89-0.98] and AUC = 0.97 [0.93-1.00], respectively) and in the international testing cohort (PSP-P versus PD, AUC = 0.92 [0.87-0.97]; PSP-P versus controls, AUC = 0.94 [0.90-0.98]), suggesting the generalizability of the results. The automated MRPI 2.0 also accurately distinguished between PSP-P and PD in the early stage of the diseases (AUC = 0.91 [0.84-0.97]). A strong correlation (r = 0.91, P < 0.001) was found between automated and manual MRPI 2.0 values. CONCLUSIONS: Our study provides an automated, validated, and generalizable magnetic resonance biomarker to distinguish PSP-P from PD. The use of the automated MRPI 2.0 algorithm rather than manual measurements could be important to standardize measures in patients with PSP-P across centers, with a positive impact on multicenter studies and clinical trials involving patients from different geographic regions. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Diagnóstico Diferencial , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Parálisis/diagnóstico , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/diagnóstico por imagen , Trastornos Parkinsonianos/diagnóstico por imagen , Parálisis Supranuclear Progresiva/diagnóstico por imagen
9.
Eur J Neurol ; 29(1): 295-304, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34382315

RESUMEN

BACKGROUND AND PURPOSE: Although the majority of migraine with aura (MwA) patients experience simple visual aura, a discrete percentage also report somatosensory, dysphasic or motor symptoms (the so-called complex auras). The wide aura clinical spectrum led to an investigation of whether the heterogeneity of the aura phenomenon could be produced by different neural correlates, suggesting an increased visual cortical excitability in complex MwA. The aim was to explore whether complex MwA patients are characterized by more pronounced connectivity changes of the visual network and whether functional abnormalities may extend beyond the visual network encompassing also the sensorimotor network in complex MwA patients compared to simple visual MwA patients. METHODS: By using a resting-state functional magnetic resonance imaging approach, the resting-state functional connectivity (RS-Fc) of both visual and sensorimotor networks in 20 complex MwA patients was compared with 20 simple visual MwA patients and 20 migraine without aura patients. RESULTS: Complex MwA patients showed a significantly higher RS-Fc of the left lingual gyrus, within the visual network, and of the right anterior insula, within the sensorimotor network, compared to both simple visual MwA and migraine without aura patients (p < 0.001). The abnormal right anterior insula RS-Fc was able to discriminate complex MwA patients from simple aura MwA patients as demonstrated by logistic regression analysis (area under the curve 0.83). CONCLUSION: Our findings suggest that higher extrastriate RS-Fc might promote cortical spreading depression onset representing the neural correlate of simple visual aura that can propagate to sensorimotor regions if an increased insula RS-Fc coexists, leading to complex aura phenotypes.


Asunto(s)
Epilepsia , Migraña con Aura , Migraña sin Aura , Humanos , Imagen por Resonancia Magnética/métodos , Migraña con Aura/diagnóstico por imagen
10.
Neurol Sci ; 43(2): 1071-1077, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34296356

RESUMEN

Mutations in POLR3A are characterized by high phenotypic heterogeneity, with manifestations ranging from severe childhood-onset hypomyelinating leukodystrophic syndromes to milder and later-onset gait disorders with central hypomyelination, with or without additional non-neurological signs. Recently, a milder phenotype consisting of late-onset spastic ataxia without hypomyelinating leukodystrophy has been suggested to be specific to the intronic c.1909 + 22G > A mutation in POLR3A. Here, we present 10 patients from 8 unrelated families with POLR3A-related late-onset spastic ataxia, all harboring the c.1909 + 22G > A variant. Most of them showed an ataxic-spastic picture, two a "pure" cerebellar phenotype, and one a "pure" spastic presentation. The non-neurological findings typically associated with POLR3A mutations were absent in all the patients. The main findings on brain MRI were bilateral hyperintensity along the superior cerebellar peduncles on FLAIR sequences, observed in most of the patients, and cerebellar and/or spinal cord atrophy, found in half of the patients. Only one patient exhibited central hypomyelination. The POLR3A mutations present in this cohort were the c.1909 + 22G > A splice site variant found in compound heterozygosity with six additional variants (three missense, two nonsense, one splice) and, in one patient, with a novel large deletion involving exons 14-18. Interestingly, this patient had the most "complex" presentation among those observed in our cohort; it included some neurological and non-neurological features, such as seizures, neurosensory deafness, and lipomas, that have not previously been reported in association with late-onset POLR3A-related disorders, and therefore further expand the phenotype.


Asunto(s)
Atrofia Óptica , Paraparesia Espástica , Paraplejía Espástica Hereditaria , Ataxias Espinocerebelosas , Ataxia/diagnóstico por imagen , Ataxia/genética , Niño , Humanos , Mutación , Fenotipo , ARN Polimerasa III/genética , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA