Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Heliyon ; 10(16): e35790, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220928

RESUMEN

The global SARS-CoV-2 monitoring effort has been extensive, resulting in many states and countries establishing wastewater-based epidemiology programs to address the spread of the virus during the pandemic. Challenges for programs include concurrently optimizing methods, training new laboratories, and implementing successful surveillance programs that can rapidly translate results for public health, and policy making. Surveillance in Michigan early in the pandemic in 2020 highlights the importance of quality-controlled data and explores correlations with wastewater and clinical case data aggregated at the state level. The lessons learned and potential measures to improve public utilization of results are discussed. The Michigan Network for Environmental Health and Technology (MiNET) established a network of laboratories that partnered with local health departments, universities, wastewater treatment plants (WWTPs) and other stakeholders to monitor SARS-CoV-2 in wastewater at 214 sites in Michigan. MiNET consisted of nineteen laboratories, twenty-nine local health departments, 6 Native American tribes, and 60 WWTPs monitoring sites representing 45 % of Michigan's population from April 6 and December 29, 2020. Three result datasets were created based on quality control criteria. Wastewater results that met all quality assurance criteria (Dataset Mp) produced strongest correlations with reported clinical cases at 16 days lag (rho = 0.866, p < 0.05). The project demonstrated the ability to successfully track SARS-CoV-2 on a large, state-wide scale, particularly data that met the outlined quality criteria and provided an early warning of increasing COVID-19 cases. MiNET is currently poised to leverage its competency to complement public health surveillance networks through environmental monitoring for new and emerging pathogens of concern and provides a valuable resource to state and federal agencies to support future responses.

2.
Anal Bioanal Chem ; 402(1): 543-50, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21898156

RESUMEN

A strategy for the simultaneous detection of multiple microRNA (miRNA) targets was developed utilizing fluorophore/quencher-labeled oligonucleotide probe sets. Two miRNA targets (miR-155 and miR-103), whose misregulation has afforded them status as putative biomarkers in certain types of cancer, were detected using our assay design. In the absence of target, the complementary fluorophore-probe and quencher-probe hybridize, resulting in a fluorescence resonance energy transfer-based quenching of the fluorescence signal. In the presence of unlabeled target, however, the antisense quencher-probe can hybridize with the target, resulting in increased fluorescence intensity as the quencher-probe is sequestered beyond the Förster radius of the fluorescent-probe. The assay design was tested in multiple matrices of buffer, cellular extract, and serum; and detection limits were found to be matrix-dependent, ranging from 0.34 to 8.89 pmol (3.4-59.3 nM) for miR-155 and 2.90-11.8 pmol (19.3-79.0 nM) for miR-103. Single, double, and triple nucleotide selectivity was also tested. Additionally, miR-155 concentrations were assessed in serum samples obtained directly from breast cancer patients without the need for RNA extraction. This assay is quantitative, possesses a low detection limit, can be applied in multiple complex matrices, and can obtain single-nucleotide selectivity. This method can be employed for the multiplex detection of solution-phase DNA or RNA targets and, more specifically, for the direct detection of serum miRNA biomarkers.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , MicroARNs/sangre , Sondas de Oligonucleótidos/sangre , Animales , Biomarcadores/sangre , Humanos , Ratones
3.
Bioconjug Chem ; 20(1): 15-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19063714

RESUMEN

Reassembly of split reporter proteins, also referred to as protein complementation, is utilized in the detection of protein-protein or protein-nucleic acid interactions. In this strategy, a reporter protein is fragmented into two inactive polypeptides to which interacting/binding partners are fused. The interaction between fused partners leads to the formation of a reassembled, active reporter. In this Communication, we have presented a proof-of-concept for the detection of a target nucleic acid sequence based on the reassembly of the bioluminescent reporter Renilla luciferase (Rluc), which is driven by DNA hybridization. Although, reassembly of Rluc though protein interactions has been demonstrated by others, the Rluc reassembly through DNA hybridization has not been shown yet, which is the novelty of this work. It is well established that bioluminescence detection offers significant advantages due to the absence of any background signal. In our study, two rationally designed fragments of Rluc were conjugated to complementary oligonucleotide probes. Hybridization of the two probes with fused Rluc fragments resulted in the reassembly of the fragments, generating active Rluc, measurable by the intensity of light given off upon addition of coelenterazine. Our study also shows that the reassembly of Rluc can be inhibited by an oligonucleotide probe that competes to bind to the hybridized probe-Rluc fragment complex, indicating a potential strategy for the quantitative detection of target nucleic acid. We were able to achieve the reassembly of Rluc fused to oligonucleotide probes using femtomole amounts of the probe-fragment protein conjugate. This concentration is approximately 4 orders of magnitude less than that reported using green fluorescent protein (GFP) as the reporter. A DNA-driven Rluc reassembly study performed in a cellular matrix did not show any interference from the matrix.


Asunto(s)
Luciferasas de Renilla/química , Hibridación de Ácido Nucleico , Fragmentos de Péptidos/química , Proteínas Luminiscentes/química , Sondas de Oligonucleótidos
4.
Anal Bioanal Chem ; 394(4): 1109-16, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19367400

RESUMEN

MicroRNAs (miRNAs) are short, approximately 22 nucleotide length RNAs that perform gene regulation. Recently, miRNA has been shown to be linked with the onset of cancer and other diseases based on miRNA expression levels. It is important, therefore, to understand miRNA function as it pertains to disease onset; however, in order to fully understand miRNA's role in a disease, it is necessary to detect the expression levels of these small molecules. The most widely used miRNA detection method is Northern blotting, which is considered as the standard of miRNA detection methods. This method, however, is time-consuming and has low sensitivity. This has led to an increase in the amount of detection methods available. These detection methods are either solid phase, occurring on a solid support, or solution phase, occurring in solution. While the solid-phase methods are adaptable to high-throughput screening and possess higher sensitivity than Northern blotting, they lack the ability for in vivo use and are often time-consuming. The solution-phase methods are advantageous in that they can be performed in vivo, are very sensitive, and are rapid; however, they cannot be applied in high-throughput settings. Although there are multiple detection methods available, including microarray technology, luminescence-based assays, electrochemical assays, etc., there is still much work to be done regarding miRNA detection. The current gaps of miRNA detection include the ability to perform multiplex, sensitive detection of miRNA with single-nucleotide specificity along with the standardization of these new methods. Current miRNA detection methods, gaps in these methods, miRNA therapeutic options, and the future outlook of miRNA detection are presented here.


Asunto(s)
MicroARNs/análisis , Northern Blotting , Electroquímica , Mediciones Luminiscentes , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Fluorescencia , Espectrometría Raman
5.
Anal Bioanal Chem ; 393(1): 125-35, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18762922

RESUMEN

Quantitation of RNA is important in diagnostics, environmental science, and basic biomedical research. RNA is considered a signature for pathogen identification, and its expression profile is linked with disease pathogenesis, allowing for biomarker identification. RNA-based diagnostics is an emerging field of research. This expansion of interest in studying RNA has generated demand for its accurate and sensitive detection. Several methods have therefore been developed to detect RNA. Resonance energy transfer methods of RNA detection are highly promising in terms of simplicity and high sensitivity. In this review, we have focused on the latest developments in resonance energy transfer methods of RNA detection that utilize various probe designs. The probe designs discussed here are molecular beacons, quenched autoligation probes, and linear oligonucleotide probes. Resonance energy transfer methods based on both fluorescence and bioluminescence detection are discussed.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , ARN/análisis , Humanos
6.
Anal Bioanal Chem ; 391(7): 2577-81, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18563395

RESUMEN

A rapid detection method for nucleic acid based on bioluminescence resonance energy transfer (BRET) from the luminescence donor Renilla luciferase to an acceptor quantum dot upon oligonucleotide probe hybridization has been developed. Utilizing a competitive assay, we detected the target nucleic acid by correlating the BRET signal with the amount of target present in the sample. This method allows for the detection of as little as 4 pmol (20 nM) of nucleic acid in a single-step, homogeneous format both in vitro in a buffer matrix as well as in a cellular matrix. Using this method, one may perform nucleic acid detection in as little as 30 min, showing much improvement over time-consuming blotting methods and solid-phase methods which require multiple wash steps to remove unbound probe. This is the first report on the use of quantum dots as a BRET acceptor in the development of a nucleic acid hybridization assay.


Asunto(s)
ADN/análisis , Luciferasas de Renilla/química , Sustancias Luminiscentes/química , Mediciones Luminiscentes/métodos , Puntos Cuánticos , Transferencia de Energía , Escherichia coli/química , Escherichia coli/genética , Imidazoles/química , Hibridación de Ácido Nucleico/métodos , Sondas de Oligonucleótidos/química , Pirazinas/química
7.
Anal Bioanal Chem ; 391(5): 1721-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18193204

RESUMEN

Intrinsically disordered proteins (IDPs) that undergo structural transition upon binding their target molecules are becoming increasingly known. IDPs, because of their binding specificity and induced folding properties, can serve as biological recognition elements for sensing applications. In this paper, BRCA1, an IDP, was utilized as the biological recognition element to detect tumor suppressor protein p53 through the BRCA1/p53 binding interaction to serve as a proof-of-concept for the use of IDPs as recognition elements. The binding resulted in a disordered-to-ordered BRCA1 conformational change, as seen in our circular dichroism (CD) measurements. This conformational change in BRCA1 (residues 219-498) was utilized in the detection of p53 (residues 311-393) via both intrinsic and extrinsic fluorescent probes. Intrinsic tryptophan residues within the BRCA1 sequence detected p53 (311-393) with a detection limit of 0.559 nM (0.112 pmol). Two environmentally sensitive fluorophores, tetramethylrhodamine-5-maleimide (TMR) and 6-((5-dimethylaminonaphthalene-1-sulfonyl)amino)hexanoic acid, succinimidyl ester (dansyl-X, SE) were conjugated to BRCA1 (219-498). Dansyl-X, SE-conjugated BRCA1 (219-498) detected p53 (311-393) with a detection limit of 1.50 nM (0.300 pmol). The sensitivities for TMR and dansyl-X, SE-conjugated BRCA1 for the detection of p53 were nearly threefold and twofold higher, respectively, than the sensitivity reported using intrinsic BRCA1 tryptophan fluorescence. CD measurements did not reveal a disruption of p53/dye-conjugated BRCA1 binding, thus validating the applicability of environmentally sensitive fluorophores as transduction moieties to detect molecules which bind to IDPs and induce a structural change.


Asunto(s)
Proteína BRCA1/análisis , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Pliegue de Proteína , Espectrometría de Fluorescencia/métodos , Proteína p53 Supresora de Tumor/análisis , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Sitios de Unión , Dicroismo Circular/métodos , Fluorescencia , Maleimidas/química , Maleimidas/metabolismo , Conformación Proteica , Succinimidas/química , Succinimidas/metabolismo , Triptófano/química , Triptófano/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
8.
J Electroanal Chem (Lausanne) ; 686: 69-72, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23472058

RESUMEN

Graphene has remarkable electrochemical properties that make it an ideal material for constructing biosensors,however it has not been explored for DNA biosensing. Herein, we report on a chitosan-modified graphene platform for the electrochemical detection of changes in DNA sequences. For this purpose, graphene synthesized chemically and characterized by Raman spectroscopy and Transmission electron microscopy, was covalently modified with positively charged chitosan to facilitate the immobilization of a single-stranded DNA `capture' oligonucleotide. The covalent attachment of chitosan to graphene was confirmed by FT-IR spectroscopy and then the capture DNA was immobilized on to the chitosan modified graphene electrode. Then, the target DNA (complementary or mismatched `mutant' DNA) was applied to the electrode and cyclic voltammetry was performed. The results of the voltammetric experiments indicate that the chitosan modified graphene electrodes immobilized with ssDNA+complementary DNA exhibit a significantly higher magnitude of redox peak current than the chitosan modified graphene electrodes immobilized with the non-complementary mutant DNAs. Together, these results demonstrate that the chitosan-graphene platform provides a rapid, stable and sensitive detection of mismatched DNA and has the potential to be used for point-of-care diagnostic tests for specific DNA mutations associated with disease conditions.

9.
Anal Chem ; 80(7): 2319-25, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18302417

RESUMEN

A hybridization assay for the detection of microRNA, miR21 in cancer cells using the bioluminescent enzyme Renilla luciferase (Rluc) as a label, has been developed. MicroRNAs are small RNAs found in plants, animals, and humans that perform key functions in gene silencing and affect early-stage cell development, cell differentiation, and cell death. miRNAs are considered useful early diagnostic and prognostic markers of cancer, candidates for therapeutic intervention, and targets for basic biomedical research. However, methods for highly sensitive and rapid detection of miRNA directly from samples such as cells that can serve as a suitable diagnostics platform are lacking. In that regard, the utilization of the bioluminescent label, Rluc, that offers the advantage of high signal-to-noise ratio, allows for the development of highly sensitive assays for the determination of miRNA in a variety of matrixes. In this paper, we have described the development of a competitive oligonucleotide hybridization assay for the detection of miR21 using the free miR21 and Rluc-labeled miR21 that competes to bind to an immobilized miR21 complementary probe. The miR21 microRNA chosen for this study is of biomedical significance because its levels are elevated in a variety of cancers. Using the optimized assay, a detection limit of 1 fmol was obtained. The assay was employed for the detection of miR21 in human breast adenocarcinoma MCF-7 cells and nontumorigenic epithelial MCF-10A cells. The comparison of miR21 expression level in two cell lines demonstrated higher expression of miR21 in breast cancer cell line MCF-7 compared to the nontumorigenic MCF-10A cells. Further, using the assay developed, the miR21 quantification could be performed directly in cell extracts. The hybridization assay was developed in a microplate format with a total assay time of 1.5 h and without the need for sample PCR amplification. The need for early molecular markers and their detection methods in cancer diagnosis is tremendous. The characteristics of the assay developed in this work show its suitability for early cancer diagnosis based on miRNA as a biomarker.


Asunto(s)
Neoplasias de la Mama/genética , Mediciones Luminiscentes/métodos , MicroARNs/análisis , MicroARNs/genética , ARN Neoplásico/análisis , Neoplasias de la Mama/química , Línea Celular Tumoral , Sondas de ADN/genética , Humanos , MicroARNs/química , ARN Neoplásico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA