Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336307

RESUMEN

Sensor data from digital health technologies (DHTs) used in clinical trials provides a valuable source of information, because of the possibility to combine datasets from different studies, to combine it with other data types, and to reuse it multiple times for various purposes. To date, there exist no standards for capturing or storing DHT biosensor data applicable across modalities and disease areas, and which can also capture the clinical trial and environment-specific aspects, so-called metadata. In this perspectives paper, we propose a metadata framework that divides the DHT metadata into metadata that is independent of the therapeutic area or clinical trial design (concept of interest and context of use), and metadata that is dependent on these factors. We demonstrate how this framework can be applied to data collected with different types of DHTs deployed in the WATCH-PD clinical study of Parkinson's disease. This framework provides a means to pre-specify and therefore standardize aspects of the use of DHTs, promoting comparability of DHTs across future studies.


Asunto(s)
Metadatos , Enfermedad de Parkinson , Humanos
2.
J Med Internet Res ; 22(10): e19068, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33034562

RESUMEN

BACKGROUND: Wearable sensors have been used successfully to characterize bradykinetic gait in patients with Parkinson disease (PD), but most studies to date have been conducted in highly controlled laboratory environments. OBJECTIVE: This paper aims to assess whether sensor-based analysis of real-life gait can be used to objectively and remotely monitor motor fluctuations in PD. METHODS: The Parkinson@Home validation study provides a new reference data set for the development of digital biomarkers to monitor persons with PD in daily life. Specifically, a group of 25 patients with PD with motor fluctuations and 25 age-matched controls performed unscripted daily activities in and around their homes for at least one hour while being recorded on video. Patients with PD did this twice: once after overnight withdrawal of dopaminergic medication and again 1 hour after medication intake. Participants wore sensors on both wrists and ankles, on the lower back, and in the front pants pocket, capturing movement and contextual data. Gait segments of 25 seconds were extracted from accelerometer signals based on manual video annotations. The power spectral density of each segment and device was estimated using Welch's method, from which the total power in the 0.5- to 10-Hz band, width of the dominant frequency, and cadence were derived. The ability to discriminate between before and after medication intake and between patients with PD and controls was evaluated using leave-one-subject-out nested cross-validation. RESULTS: From 18 patients with PD (11 men; median age 65 years) and 24 controls (13 men; median age 68 years), ≥10 gait segments were available. Using logistic LASSO (least absolute shrinkage and selection operator) regression, we classified whether the unscripted gait segments occurred before or after medication intake, with mean area under the receiver operator curves (AUCs) varying between 0.70 (ankle of least affected side, 95% CI 0.60-0.81) and 0.82 (ankle of most affected side, 95% CI 0.72-0.92) across sensor locations. Combining all sensor locations did not significantly improve classification (AUC 0.84, 95% CI 0.75-0.93). Of all signal properties, the total power in the 0.5- to 10-Hz band was most responsive to dopaminergic medication. Discriminating between patients with PD and controls was generally more difficult (AUC of all sensor locations combined: 0.76, 95% CI 0.62-0.90). The video recordings revealed that the positioning of the hands during real-life gait had a substantial impact on the power spectral density of both the wrist and pants pocket sensor. CONCLUSIONS: We present a new video-referenced data set that includes unscripted activities in and around the participants' homes. Using this data set, we show the feasibility of using sensor-based analysis of real-life gait to monitor motor fluctuations with a single sensor location. Future work may assess the value of contextual sensors to control for real-world confounders.


Asunto(s)
Marcha/fisiología , Monitoreo Fisiológico/métodos , Trastornos Motores/diagnóstico , Enfermedad de Parkinson/complicaciones , Dispositivos Electrónicos Vestibles/normas , Anciano , Femenino , Humanos , Masculino , Trastornos Motores/etiología
3.
Sensors (Basel) ; 18(4)2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29659528

RESUMEN

The use of wearable sensing technology for objective, non-invasive and remote clinimetric testing of symptoms has considerable potential. However, the accuracy achievable with such technology is highly reliant on separating the useful from irrelevant sensor data. Monitoring patient symptoms using digital sensors outside of controlled, clinical lab settings creates a variety of practical challenges, such as recording unexpected user behaviors. These behaviors often violate the assumptions of clinimetric testing protocols, where these protocols are designed to probe for specific symptoms. Such violations are frequent outside the lab and affect the accuracy of the subsequent data analysis and scientific conclusions. To address these problems, we report on a unified algorithmic framework for automated sensor data quality control, which can identify those parts of the sensor data that are sufficiently reliable for further analysis. Combining both parametric and nonparametric signal processing and machine learning techniques, we demonstrate that across 100 subjects and 300 clinimetric tests from three different types of behavioral clinimetric protocols, the system shows an average segmentation accuracy of around 90%. By extracting reliable sensor data, it is possible to strip the data of confounding factors in the environment that may threaten reproducibility and replicability.

4.
Sensors (Basel) ; 17(10)2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29027928

RESUMEN

Electrocardiography has added value to automatically detect seizures in temporal lobe epilepsy (TLE) patients. The wired hospital system is not suited for a long-term seizure detection system at home. To address this need, the performance of two wearable devices, based on electrocardiography (ECG) and photoplethysmography (PPG), are compared with hospital ECG using an existing seizure detection algorithm. This algorithm classifies the seizures on the basis of heart rate features, extracted from the heart rate increase. The algorithm was applied to recordings of 11 patients in a hospital setting with 701 h capturing 47 (fronto-)temporal lobe seizures. The sensitivities of the hospital system, the wearable ECG device and the wearable PPG device were respectively 57%, 70% and 32%, with corresponding false alarms per hour of 1.92, 2.11 and 1.80. Whereas seizure detection performance using the wrist-worn PPG device was considerably lower, the performance using the wearable ECG is proven to be similar to that of the hospital ECG.


Asunto(s)
Electrocardiografía , Epilepsia , Fotopletismografía , Convulsiones/diagnóstico , Dispositivos Electrónicos Vestibles , Algoritmos , Electroencefalografía , Frecuencia Cardíaca , Hospitales , Humanos
5.
Sensors (Basel) ; 18(1)2017 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-29295522

RESUMEN

A wearable electroencephalogram (EEG) device for continuous monitoring of patients suffering from epilepsy would provide valuable information for the management of the disease. Currently no EEG setup is small and unobtrusive enough to be used in daily life. Recording behind the ear could prove to be a solution to a wearable EEG setup. This article examines the feasibility of recording epileptic EEG from behind the ear. It is achieved by comparison with scalp EEG recordings. Traditional scalp EEG and behind-the-ear EEG were simultaneously acquired from 12 patients with temporal, parietal, or occipital lobe epilepsy. Behind-the-ear EEG consisted of cross-head channels and unilateral channels. The analysis on Electrooculography (EOG) artifacts resulting from eye blinking showed that EOG artifacts were absent on cross-head channels and had significantly small amplitudes on unilateral channels. Temporal waveform and frequency content during seizures from behind-the-ear EEG visually resembled that from scalp EEG. Further, coherence analysis confirmed that behind-the-ear EEG acquired meaningful epileptic discharges similarly to scalp EEG. Moreover, automatic seizure detection based on support vector machine (SVM) showed that comparable seizure detection performance can be achieved using these two recordings. With scalp EEG, detection had a median sensitivity of 100% and a false detection rate of 1.14 per hour, while, with behind-the-ear EEG, it had a median sensitivity of 94.5% and a false detection rate of 0.52 per hour. These findings demonstrate the feasibility of detecting seizures from EEG recordings behind the ear for patients with focal epilepsy.


Asunto(s)
Electroencefalografía , Epilepsias Parciales , Humanos , Cuero Cabelludo , Convulsiones , Dispositivos Electrónicos Vestibles
6.
JMIR Mhealth Uhealth ; 9(11): e27674, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34806993

RESUMEN

BACKGROUND: Video electroencephalography recordings, routinely used in epilepsy monitoring units, are the gold standard for monitoring epileptic seizures. However, monitoring is also needed in the day-to-day lives of people with epilepsy, where video electroencephalography is not feasible. Wearables could fill this gap by providing patients with an accurate log of their seizures. OBJECTIVE: Although there are already systems available that provide promising results for the detection of tonic-clonic seizures (TCSs), research in this area is often limited to detection from 1 biosignal modality or only during the night when the patient is in bed. The aim of this study is to provide evidence that supervised machine learning can detect TCSs from multimodal data in a new data set during daytime and nighttime. METHODS: An extensive data set of biosignals from a multimodal watch worn by people with epilepsy was recorded during their stay in the epilepsy monitoring unit at 2 European clinical sites. From a larger data set of 243 enrolled participants, those who had data recorded during TCSs were selected, amounting to 10 participants with 21 TCSs. Accelerometry and electrodermal activity recorded by the wearable device were used for analysis, and seizure manifestation was annotated in detail by clinical experts. Ten accelerometry and 3 electrodermal activity features were calculated for sliding windows of variable size across the data. A gradient tree boosting algorithm was used for seizure detection, and the optimal parameter combination was determined in a leave-one-participant-out cross-validation on a training set of 10 seizures from 8 participants. The model was then evaluated on an out-of-sample test set of 11 seizures from the remaining 2 participants. To assess specificity, we additionally analyzed data from up to 29 participants without TCSs during the model evaluation. RESULTS: In the leave-one-participant-out cross-validation, the model optimized for sensitivity could detect all 10 seizures with a false alarm rate of 0.46 per day in 17.3 days of data. In a test set of 11 out-of-sample TCSs, amounting to 8.3 days of data, the model could detect 10 seizures and produced no false positives. Increasing the test set to include data from 28 more participants without additional TCSs resulted in a false alarm rate of 0.19 per day in 78 days of wearable data. CONCLUSIONS: We show that a gradient tree boosting machine can robustly detect TCSs from multimodal wearable data in an original data set and that even with very limited training data, supervised machine learning can achieve a high sensitivity and low false-positive rate. This methodology may offer a promising way to approach wearable-based nonconvulsive seizure detection.


Asunto(s)
Convulsiones , Dispositivos Electrónicos Vestibles , Acelerometría , Algoritmos , Electroencefalografía , Humanos , Convulsiones/diagnóstico
7.
IEEE J Biomed Health Inform ; 25(6): 2293-2304, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33180738

RESUMEN

Passive monitoring in daily life may provide valuable insights into a person's health throughout the day. Wearable sensor devices play a key role in enabling such monitoring in a non-obtrusive fashion. However, sensor data collected in daily life reflect multiple health and behavior-related factors together. This creates the need for a structured principled analysis to produce reliable and interpretable predictions that can be used to support clinical diagnosis and treatment. In this work we develop a principled modelling approach for free-living gait (walking) analysis. Gait is a promising target for non-obtrusive monitoring because it is common and indicative of many different movement disorders such as Parkinson's disease (PD), yet its analysis has largely been limited to experimentally controlled lab settings. To locate and characterize stationary gait segments in free-living using accelerometers, we present an unsupervised probabilistic framework designed to segment signals into differing gait and non-gait patterns. We evaluate the approach using a new video-referenced dataset including 25 PD patients with motor fluctuations and 25 age-matched controls, performing unscripted daily living activities in and around their own houses. Using this dataset, we demonstrate the framework's ability to detect gait and predict medication induced fluctuations in PD patients based on free-living gait. We show that our approach is robust to varying sensor locations, including the wrist, ankle, trouser pocket and lower back.


Asunto(s)
Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Actividades Cotidianas , Marcha , Humanos , Enfermedad de Parkinson/diagnóstico , Caminata
8.
Digit Biomark ; 3(3): 116-132, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32175520

RESUMEN

Digital health technologies (smartphones, smartwatches, and other body-worn sensors) can act as novel tools to aid in the diagnosis and remote objective monitoring of an individual's disease symptoms, both in clinical care and in research. Nonetheless, such digital health technologies have yet to widely demonstrate value in clinical research due to insufficient data interpretability and lack of regulatory acceptance. Metadata, i.e., data that accompany and describe the primary data, can be utilized to better understand the context of the sensor data and can assist in data management, data sharing, and subsequent data analysis. The need for data and metadata standards for digital health technologies has been raised in academic and industry research communities and has also been noted by regulatory authorities. Therefore, to address this unmet need, we here propose a metadata set that reflects regulatory guidelines and that can serve as a conceptual map to (1) inform researchers on the metadata they should collect in digital health studies, aiming to increase the interpretability and exchangeability of their data, and (2) direct standard development organizations on how to extend their existing standards to incorporate digital health technologies. The proposed metadata set is informed by existing standards pertaining to clinical trials and medical devices, in addition to existing schemas that have supported digital health technology studies. We illustrate this specifically in the context of Parkinson's disease, as a model for a wide range of other chronic conditions for which remote monitoring would be useful in both care and science. We invite the scientific and clinical research communities to apply the proposed metadata set to ongoing and planned research. Where the proposed metadata fall short, we ask users to contribute to its ongoing revision so that an adequate degree of consensus can be maintained in a rapidly evolving technology landscape.

9.
Parkinsonism Relat Disord ; 61: 70-76, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30635244

RESUMEN

INTRODUCTION: Clinical assessment of motor symptoms in Parkinson's disease (PD) is subjective and may not reflect patient real-world experience. This two-part pilot study evaluated the accuracy of the NIMBLE wearable biosensor patch (containing an accelerometer and electromyography sensor) to record body movements in clinic and home environments versus clinical measurement of motor symptoms. METHODS: Patients (Hoehn & Yahr 2-3) had motor symptom fluctuations and were on a stable levodopa dose. Part 1 investigated different sensor body locations (six patients). In Part 2, 21 patients wore four sensors (chest, and most affected side of shin, forearm and back-of-hand) during a 2-day clinic- and 1-day home-based evaluation. Patients underwent Unified Parkinson's Disease Rating Scale assessments on days 1-2, and performed pre-defined motor activities at home on day 3. An algorithm estimated motor-symptom severity (predicted scores) using patch data (in-clinic); this was compared with in-clinic motor symptom assessments (observed scores). RESULTS: The overall correlation coefficient between in-clinic observed and sensor algorithm-predicted scores was 0.471 (p = 0.031). Predicted and observed scores were identical 45% of the time, with a predicted score within a ±1 range 91% of the time. Exact accuracy for each activity varied, ranging from 32% (pronation/supination) to 67% (rest-tremor-amplitude). Patients rated the patch easy-to-use and as providing valuable data for managing PD symptoms. Overall patch-adhesion success was 97.2%. The patch was safe and generally well tolerated. CONCLUSIONS: This study showed a correlation between sensor algorithm-predicted and clinician-observed motor-symptom scores. Algorithm refinement using patient populations with greater symptom-severity range may potentially improve the correlation.


Asunto(s)
Acelerometría/instrumentación , Electromiografía/instrumentación , Enfermedad de Parkinson/fisiopatología , Dispositivos Electrónicos Vestibles , Anciano , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Tecnología Inalámbrica
10.
IEEE Trans Biomed Eng ; 65(5): 1133-1139, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28858780

RESUMEN

OBJECTIVE: Gait analysis of animal disease models can provide valuable insights into in vivo compound effects and thus help in preclinical drug development. The purpose of this paper is to establish a computational gait analysis approach for the Noldus Catwalk system, in which footprints are automatically captured and stored. METHODS: We present a - to our knowledge - first machine learning based approach for the Catwalk system, which comprises a step decomposition, definition and extraction of meaningful features, multivariate step sequence alignment, feature selection, and training of different classifiers (gradient boosting machine, random forest, and elastic net). RESULTS: Using animal-wise leave-one-out cross validation we demonstrate that with our method we can reliable separate movement patterns of a putative Parkinson's disease animal model and several control groups. Furthermore, we show that we can predict the time point after and the type of different brain lesions and can even forecast the brain region, where the intervention was applied. We provide an in-depth analysis of the features involved into our classifiers via statistical techniques for model interpretation. CONCLUSION: A machine learning method for automated analysis of data from the Noldus Catwalk system was established. SIGNIFICANCE: Our works shows the ability of machine learning to discriminate pharmacologically relevant animal groups based on their walking behavior in a multivariate manner. Further interesting aspects of the approach include the ability to learn from past experiments, improve with more data arriving and to make predictions for single animals in future studies.


Asunto(s)
Modelos Animales de Enfermedad , Análisis de la Marcha/métodos , Aprendizaje Automático , Reconocimiento de Normas Patrones Automatizadas/métodos , Procesamiento de Señales Asistido por Computador , Animales , Femenino , Pie/fisiología , Marcha/efectos de los fármacos , Marcha/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidopamina/farmacología , Trastornos Parkinsonianos/fisiopatología , Caminata/fisiología
11.
Neurotherapeutics ; 15(2): 470-488, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29464573

RESUMEN

Understanding the mechanisms of epileptogenesis is essential to develop novel drugs that could prevent or modify the disease. Neuroinflammation has been proposed as a promising target for therapeutic interventions to inhibit the epileptogenic process that evolves from traumatic brain injury. However, it remains unclear whether cytokine-related pathways, particularly TNFα signaling, have a critical role in the development of epilepsy. In this study, we investigated the role of innate inflammation in an in vitro model of post-traumatic epileptogenesis. We combined organotypic hippocampal slice cultures, representing an in vitro model of post-traumatic epilepsy, with multi-electrode array recordings to directly monitor the development of epileptiform activity and to examine the concomitant changes in cytokine release, cell death, and glial cell activation. We report that synchronized ictal- and interictal-like activities spontaneously evolve in this culture. Dynamic changes in the release of the pro-inflammatory cytokines IL-1ß, TNFα, and IL-6 were observed throughout the culture period (3 to 21 days in vitro) with persistent activation of microglia and astrocytes. We found that neutralizing TNFα with a polyclonal antibody significantly reduced ictal discharges, and this effect lasted for 1 week after antibody washout. Neither phenytoin nor an anti-IL-6 polyclonal antibody was efficacious in inhibiting the development of epileptiform activity. Our data show a sustained effect of the anti-TNFα antibody on the ictal progression in organotypic hippocampal slice cultures supporting the critical role of inflammatory mediators in epilepsy and establishing a proof-of-principle evidence for the utility of this preparation to test the therapeutic effects of anti-inflammatory treatments.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Encefalitis/metabolismo , Epilepsia/metabolismo , Hipocampo/metabolismo , Animales , Astrocitos/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Muerte Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/complicaciones , Epilepsia/etiología , Femenino , Masculino , Microglía/metabolismo , Neuronas/metabolismo , Ratas Sprague-Dawley , Técnicas de Cultivo de Tejidos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/inmunología
12.
PLoS One ; 12(12): e0189161, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29261709

RESUMEN

Wearable devices can capture objective day-to-day data about Parkinson's Disease (PD). This study aims to assess the feasibility of implementing wearable technology to collect data from multiple sensors during the daily lives of PD patients. The Parkinson@home study is an observational, two-cohort (North America, NAM; The Netherlands, NL) study. To recruit participants, different strategies were used between sites. Main enrolment criteria were self-reported diagnosis of PD, possession of a smartphone and age≥18 years. Participants used the Fox Wearable Companion app on a smartwatch and smartphone for a minimum of 6 weeks (NAM) or 13 weeks (NL). Sensor-derived measures estimated information about movement. Additionally, medication intake and symptoms were collected via self-reports in the app. A total of 953 participants were included (NL: 304, NAM: 649). Enrolment rate was 88% in the NL (n = 304) and 51% (n = 649) in NAM. Overall, 84% (n = 805) of participants contributed sensor data. Participants were compliant for 68% (16.3 hours/participant/day) of the study period in NL and for 62% (14.8 hours/participant/day) in NAM. Daily accelerometer data collection decreased 23% in the NL after 13 weeks, and 27% in NAM after 6 weeks. Data contribution was not affected by demographics, clinical characteristics or attitude towards technology, but was by the platform usability score in the NL (χ2 (2) = 32.014, p<0.001), and self-reported depression in NAM (χ2(2) = 6.397, p = .04). The Parkinson@home study shows that it is feasible to collect objective data using multiple wearable sensors in PD during daily life in a large cohort.


Asunto(s)
Técnicas Biosensibles , Enfermedad de Parkinson/fisiopatología , Anciano , Estudios de Factibilidad , Femenino , Marcha , Humanos , Masculino , Persona de Mediana Edad , Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA