Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 380(21): 2031-2040, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31116919

RESUMEN

BACKGROUND: Nasal high-flow therapy is an alternative to nasal continuous positive airway pressure (CPAP) as a means of respiratory support for newborn infants. The efficacy of high-flow therapy in nontertiary special care nurseries is unknown. METHODS: We performed a multicenter, randomized, noninferiority trial involving newborn infants (<24 hours of age; gestational age, ≥31 weeks) in special care nurseries in Australia. Newborn infants with respiratory distress and a birth weight of at least 1200 g were assigned to treatment with either high-flow therapy or CPAP. The primary outcome was treatment failure within 72 hours after randomization. Infants in whom high-flow therapy failed could receive CPAP. Noninferiority was determined by calculating the absolute difference in the risk of the primary outcome, with a noninferiority margin of 10 percentage points. RESULTS: A total of 754 infants (mean gestational age, 36.9 weeks, and mean birth weight, 2909 g) were included in the primary intention-to-treat analysis. Treatment failure occurred in 78 of 381 infants (20.5%) in the high-flow group and in 38 of 373 infants (10.2%) in the CPAP group (risk difference, 10.3 percentage points; 95% confidence interval [CI], 5.2 to 15.4). In a secondary per-protocol analysis, treatment failure occurred in 49 of 339 infants (14.5%) in the high-flow group and in 27 of 338 infants (8.0%) in the CPAP group (risk difference, 6.5 percentage points; 95% CI, 1.7 to 11.2). The incidences of mechanical ventilation, transfer to a tertiary neonatal intensive care unit, and adverse events did not differ significantly between the groups. CONCLUSIONS: Nasal high-flow therapy was not shown to be noninferior to CPAP and resulted in a significantly higher incidence of treatment failure than CPAP when used in nontertiary special care nurseries as early respiratory support for newborn infants with respiratory distress. (Funded by the Australian National Health and Medical Research Council and Monash University; HUNTER Australian and New Zealand Clinical Trials Registry number, ACTRN12614001203640.).


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Ventilación no Invasiva , Terapia por Inhalación de Oxígeno/métodos , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia , Presión de las Vías Aéreas Positiva Contínua/efectos adversos , Femenino , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Masculino , Ventilación no Invasiva/efectos adversos , Insuficiencia del Tratamiento
2.
J Pharmacokinet Pharmacodyn ; 47(5): 513-526, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32710210

RESUMEN

A modeling and simulation approach was used for quantitative comparison of a new generation HER2 antibody drug conjugate (ADC, PF-06804103) with trastuzumab-DM1 (T-DM1). To compare preclinical efficacy, the pharmacokinetic (PK)/pharmacodynamic (PD) relationship of PF-06804103 and T-DM1 was determined across a range of mouse tumor xenograft models, using a tumor growth inhibition model. The tumor static concentration was assigned as the minimal efficacious concentration. PF-06804103 was concluded to be more potent than T-DM1 across cell lines studied. TSCs ranged from 1.0 to 9.8 µg/mL (n = 7) for PF-06804103 and from 4.7 to 29 µg/mL (n = 5) for T-DM1. Two experimental models which were resistant to T-DM1, responded to PF-06804103 treatment. A mechanism-based target mediated drug disposition (TMDD) model was used to predict the human PK of PF-06804103. This model was constructed and validated based on T-DM1 which has non-linear PK at doses administered in the clinic, driven by binding to shed HER2. Non-linear PK is predicted for PF-06804103 in the clinic and is dependent upon circulating HER2 extracellular domain (ECD) concentrations. The models were translated to human and suggested greater efficacy for PF-06804103 compared to T-DM1. In conclusion, a fit-for-purpose translational PK/PD strategy for ADCs is presented and used to compare a new generation HER2 ADC with T-DM1.


Asunto(s)
Ado-Trastuzumab Emtansina/farmacocinética , Antineoplásicos Inmunológicos/farmacocinética , Inmunoconjugados/farmacocinética , Neoplasias/tratamiento farmacológico , Receptor ErbB-2/antagonistas & inhibidores , Administración Intravenosa , Ado-Trastuzumab Emtansina/administración & dosificación , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Línea Celular Tumoral , Simulación por Computador , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inmunoconjugados/administración & dosificación , Macaca fascicularis , Masculino , Ratones , Modelos Biológicos , Neoplasias/patología , Receptor ErbB-2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cancer Immunol Immunother ; 67(2): 247-259, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29067496

RESUMEN

Strong evidence exists supporting the important role T cells play in the immune response against tumors. Still, the ability to initiate tumor-specific immune responses remains a challenge. Recent clinical trials suggest that bispecific antibody-mediated retargeted T cells are a promising therapeutic approach to eliminate hematopoietic tumors. However, this approach has not been validated in solid tumors. PF-06671008 is a dual-affinity retargeting (DART®)-bispecific protein engineered with enhanced pharmacokinetic properties to extend in vivo half-life, and designed to engage and activate endogenous polyclonal T cell populations via the CD3 complex in the presence of solid tumors expressing P-cadherin. This bispecific molecule elicited potent P-cadherin expression-dependent cytotoxic T cell activity across a range of tumor indications in vitro, and in vivo in tumor-bearing mice. Regression of established tumors in vivo was observed in both cell line and patient-derived xenograft models engrafted with circulating human T lymphocytes. Measurement of in vivo pharmacodynamic markers demonstrates PF-06671008-mediated T cell activation, infiltration and killing as the mechanism of tumor inhibition.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Cadherinas/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T/inmunología , Animales , Complejo CD3/inmunología , Línea Celular Tumoral , Cricetinae , Cricetulus , Femenino , Células HCT116 , Células HT29 , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Pharmacokinet Pharmacodyn ; 45(2): 339-349, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29423862

RESUMEN

The objective of this manuscript was to establish in vitro-in vivo correlation (IVIVC) between the in vitro efficacy and in vivo efficacy of antibody drug conjugates (ADCs), using a PK/PD modeling approach. Nineteen different ADCs were used to develop IVIVC. In vitro efficacy of ADCs was evaluated using a kinetic cell cytotoxicity assay. The cytotoxicity data obtained from in vitro studies was characterized using a novel mathematical model, parameter estimates from which were used to derive an in vitro efficacy matrix for each ADC, termed as 'in vitro tumor static concentration' (TSCin vitro). TSCin vitro is a theoretical concentration at continuous exposure of which the number of cells will neither increase nor decrease, compared to the initial cell number in the experiment. The in vivo efficacy of ADCs was evaluated using tumor growth inhibition (TGI) studies performed on human tumor xenograft bearing mice. The TGI data obtained from in vivo studies was characterized using a PK/PD model, parameter estimates from which were used to derive an in vivo efficacy matrix for each ADC, termed as 'in vivo tumor static concentration' (TSCin vivo). TSCin vivo is a theoretical concentration if one were to maintain in the plasma of a tumor bearing mouse, the tumor volume will neither increase nor decrease compared to the initial tumor volume. Comparison of the TSCin vitro and TSCin vivo values from 19 ADCs provided a linear and positive IVIVC. The Spearman's rank correlation coefficient for TSCin vitro and TSCin vivo was found to be 0.82. On average TSCin vivo was found to be ~ 27 times higher than TSCin vitro. The reasonable IVIVC for ADCs suggests that in vitro efficacy data was correctly able to differentiate ADCs for their in vivo efficacy. Thus, IVIVC can be used as a tool to triage ADC molecules in the discovery stage, thereby preventing unnecessary scaling-up of ADCs and waste of time and resources. An ability to predict the concentration of ADC that is efficacious in vivo using the in vitro data can also help in optimizing the experimental design of preclinical efficacy studies. As such, the novel PK/PD modeling method presented here to establish IVIVC for ADCs holds promise, and should be evaluated further using diverse set of cell lines and anticancer agents.


Asunto(s)
Anticuerpos/metabolismo , Anticuerpos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Animales , Femenino , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Ratones , Ratones Desnudos , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
6.
Bioconjug Chem ; 28(2): 620-626, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28140559

RESUMEN

As antibody-drug conjugate (ADC) design is evolving with novel payload, linker, and conjugation chemistry, the need for sensitive and precise quantitative measurement of conjugated payload to support pharmacokinetics (PK) is in high demand. Compared to ADCs containing noncleavable linkers, a strategy specific to linkers which are liable to pH, chemical reduction, or enzymatic cleavage has gained popularity in recent years. One bioanalytical approach to take advantage of this type of linker design is the development of a PK assay measuring released conjugated payload. For the ADC utilizing a dipeptide ValCit linker studied in this report, the release of payload PF-06380101 was achieved with high efficiency using a purified cathepsin B enzyme. The subsequent liquid chromatography mass spectrometry (LC/MS) quantitation leads to the PK profile of the conjugated payload. For this particular linker using a maleimide-based conjugation chemistry, one potential route of payload loss would result in an albumin adduct of the linker-payload. While this adduct's formation has been previously reported, here, for the first time, we have shown that payload from a source other than ADC contributes only up to 4% of total conjugated payload while it accounts for approximately 35% of payload lost from the ADC at 48 h after dosing to rats.


Asunto(s)
Catepsina B/metabolismo , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacocinética , Animales , Alcoholes Bencílicos/química , Alcoholes Bencílicos/metabolismo , Dipéptidos/química , Dipéptidos/metabolismo , Diseño de Fármacos , Inmunoconjugados/química , Masculino , Maleimidas/química , Maleimidas/metabolismo , Ratas Sprague-Dawley
7.
Anal Chem ; 88(9): 4979-86, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27075639

RESUMEN

The reactive thiol of cysteine is often used for coupling maleimide-containing linker-payloads to antibodies resulting in the generation of antibody drug conjugates (ADCs). Currently, a numbers of ADCs in drug development are made by coupling a linker-payload to native or engineered cysteine residues on the antibody. An ADC conjugated via hinge-cysteines to an auristatin payload was used as a model in this study to understand the impact of the maleimide linkers on ADC stability. The payload was conjugated to trastuzumab by a protease-cleavable linker, maleimido-caproyl-valine-citruline-p-amino-benzyloxy carbonyl (mcVC-PABC). In plasma stability assays, when the ADC (Trastuzumab-mcVC-PABC-Auristatin-0101) was incubated with plasma over a 144-h time-course, a discrepancy was observed between the measured released free payload concentration and the measured loss of drug-to-antibody ratio (DAR), as measured by liquid chromatography-mass spectrometry (LC-MS). We found that an enzymatic release of payload from ADC-depleted human plasma at 144 h was able to account for almost 100% of the DAR loss. Intact protein mass analysis showed that at the 144 h time point, the mass of the major protein in ADC-depleted human plasma had an additional 1347 Da over the native albumin extracted from human plasma, exactly matching the mass of the linker-payload. In addition, protein gel electrophoresis showed that there was only one enriched protein in the 144 h ADC-depleted and antipayload immunoprecipitated plasma sample, as compared to the 0 h plasma immunoprecipitated sample, and the mass of this enriched protein was slightly heavier than the mass of serum albumin. Furthermore, the albumin adduct was also identified in 96 h and 168 h postdose in vivo cynomolgus monkey plasma. These results strongly suggest that the majority of the deconjugated mc-VC-PABC-auristatin ultimately is transferred to serum albumin, forming a long-lived albumin-linker-payload adduct. To our knowledge, this is the first report quantitatively characterizing the extent of linker-payload transfer to serum albumin and the first clear example of in vivo formation of an albumin-linker-payload adduct.


Asunto(s)
Aminobenzoatos/química , Maleimidas/química , Oligopéptidos/química , Trastuzumab/química , Aminobenzoatos/sangre , Animales , Humanos , Macaca fascicularis , Maleimidas/sangre , Oligopéptidos/sangre , Ratas , Trastuzumab/sangre
8.
Bioconjug Chem ; 27(8): 1880-8, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27412791

RESUMEN

There is a considerable ongoing work to identify new cytotoxic payloads that are appropriate for antibody-based delivery, acting via mechanisms beyond DNA damage and microtubule disruption, highlighting their importance to the field of cancer therapeutics. New modes of action will allow a more diverse set of tumor types to be targeted and will allow for possible mechanisms to evade the drug resistance that will invariably develop to existing payloads. Spliceosome inhibitors are known to be potent antiproliferative agents capable of targeting both actively dividing and quiescent cells. A series of thailanstatin-antibody conjugates were prepared in order to evaluate their potential utility in the treatment of cancer. After exploring a variety of linkers, we found that the most potent antibody-drug conjugates (ADCs) were derived from direct conjugation of the carboxylic acid-containing payload to surface lysines of the antibody (a "linker-less" conjugate). Activity of these lysine conjugates was correlated to drug-loading, a feature not typically observed for other payload classes. The thailanstatin-conjugates were potent in high target expressing cells, including multidrug-resistant lines, and inactive in nontarget expressing cells. Moreover, these ADCs were shown to promote altered splicing products in N87 cells in vitro, consistent with their putative mechanism of action. In addition, the exposure of the ADCs was sufficient to result in excellent potency in a gastric cancer xenograft model at doses as low as 1.5 mg/kg that was superior to the clinically approved ADC T-DM1. The results presented herein therefore open the door to further exploring splicing inhibition as a potential new mode-of-action for novel ADCs.


Asunto(s)
Productos Biológicos/química , Inmunoconjugados/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Ácidos Carboxílicos/química , Línea Celular Tumoral , Transformación Celular Neoplásica , Cisteína/química , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Lisina/química , Maleimidas/química , Ratones , Piranos/química , Distribución Tisular
9.
Bioconjug Chem ; 25(10): 1871-80, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25216346

RESUMEN

The stability of the connection between the antibody and the toxin can have a profound impact on ADC safety and efficacy. There has been increasing evidence in recent years that maleimide-based ADCs are prone to payload loss via a retro-Michael type reaction. Herein, we report a mild method for the hydrolysis of the succinimide-thioether ring which results in a "ring-opened" linker. ADCs containing this hydrolyzed succinimide linker show equivalent cytotoxicity, improved in vitro stability, improved PK exposure, and improved efficacy as compared to their nonhydrolyzed counterparts. This method offers a simple way to improve the stability, exposure, and efficacy of maleimide-based ADCs.


Asunto(s)
Inmunotoxinas/química , Succinimidas/química , Sulfuros/química , Animales , Línea Celular Tumoral , Estabilidad de Medicamentos , Humanos , Hidrólisis , Inmunotoxinas/sangre , Inmunotoxinas/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Estabilidad Proteica
10.
Bioorg Med Chem Lett ; 23(10): 3059-63, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23566514

RESUMEN

The synthesis and biological evaluation of novel Tie-2 kinase inhibitors are presented. Based on the pyrrolopyrimidine chemotype, several new series are described, including the benzimidazole series by linking a benzimidazole to the C5-position of the 4-amino-pyrrolopyrimidine core and the ketophenyl series synthesized by incorporating a ketophenyl group to the C5-position. Medicinal chemistry efforts led to potent Tie-2 inhibitors. Compound 15, a ketophenyl pyrrolopyrimidine urea analog with improved physicochemical properties, demonstrated favorable in vitro attributes as well as dose responsive and robust oral tumor growth inhibition in animal models.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Descubrimiento de Drogas , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Receptor TIE-2/antagonistas & inhibidores , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Estructura Molecular , Neoplasias/enzimología , Neoplasias/patología , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirimidinas/síntesis química , Pirimidinas/química , Pirroles/síntesis química , Pirroles/química , Ratas , Ratas Sprague-Dawley , Receptor TIE-2/metabolismo , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Physiother Theory Pract ; 39(9): 1929-1937, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35387568

RESUMEN

INTRODUCTION: In response to the COVID-19 pandemic, telehealth has been rapidly implemented in outpatient services worldwide. However, little is known about the experiences of telehealth in a tertiary outpatient physiotherapy setting. OBJECTIVE: 1) describe the experience of physiotherapists and patients who utilized telehealth services in a tertiary health facility; and 2) identify the challenges and opportunities of physiotherapy service provision via telehealth in a tertiary health facility. METHODS: A mixed-methods approach was undertaken in the physiotherapy outpatient department between June and October 2020. Patients utilizing telehealth services were invited to complete a purposely designed survey. Physiotherapists completed the Telehealth Usability Questionnaire (TUQ) and provided open-ended responses. Descriptive analysis of quantitative data was completed and thematic analysis was used for qualitative data. RESULTS: Patients reported positive experiences with telehealth, with 93% finding it easy to use and 90% satisfied with the time it took to get an appointment. Scores on the TUQ by physiotherapists were highest for usefulness with a mean (SD) score of 6.02 (1.09), while lower scores were seen for reliability with a score of 3.24 (1.48). Five broad themes were identified: 1) connecting with patients during a pandemic; 2) keeping treatment on track; 3) unprepared for the technology challenges; 4) telehealth - not quite the real thing; and 5) better resources to facilitate moving forwards.While the overall patient experience was high, physiotherapist's satisfaction with telehealth was more varied. Additional work may be needed to improve the technical and logistical aspects of telehealth to support ongoing use in physiotherapy clinical practice.


Asunto(s)
COVID-19 , Telemedicina , Humanos , Satisfacción del Paciente , Pacientes Ambulatorios , Pandemias , Reproducibilidad de los Resultados , Atención Ambulatoria , Modalidades de Fisioterapia
12.
Clin Cancer Res ; 27(2): 622-631, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33148666

RESUMEN

PURPOSE: Mortality due to acute myeloid leukemia (AML) remains high, and the management of relapsed or refractory AML continues to be therapeutically challenging. The reapproval of Mylotarg, an anti-CD33-calicheamicin antibody-drug conjugate (ADC), has provided a proof of concept for an ADC-based therapeutic for AML. Several other ADCs have since entered clinical development of AML, but have met with limited success. We sought to develop a next-generation ADC for AML with a wide therapeutic index (TI) that overcomes the shortcomings of previous generations of ADCs. EXPERIMENTAL DESIGN: We compared the TI of our novel CD33-targeted ADC platform with other currently available CD33-targeted ADCs in preclinical models of AML. Next, using this next-generation ADC platform, we performed a head-to-head comparison of two attractive AML antigens, CD33 and CD123. RESULTS: Our novel ADC platform offered improved safety and TI when compared with certain currently available ADC platforms in preclinical models of AML. Differentiation between the CD33- and CD123-targeted ADCs was observed in safety studies conducted in cynomolgus monkeys. The CD33-targeted ADC produced severe hematologic toxicity, whereas minimal hematologic toxicity was observed with the CD123-targeted ADC at the same doses and exposures. The improved toxicity profile of an ADC targeting CD123 over CD33 was consistent with the more restricted expression of CD123 in normal tissues. CONCLUSIONS: We optimized all components of ADC design (i.e., leukemia antigen, antibody, and linker-payload) to develop an ADC that has the potential to translate into an effective new therapy against AML.


Asunto(s)
Gemtuzumab/uso terapéutico , Inmunoconjugados/uso terapéutico , Subunidad alfa del Receptor de Interleucina-3/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Lectina 3 Similar a Ig de Unión al Ácido Siálico/antagonistas & inhibidores , Animales , Antineoplásicos Inmunológicos/inmunología , Antineoplásicos Inmunológicos/farmacocinética , Antineoplásicos Inmunológicos/uso terapéutico , Área Bajo la Curva , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Gemtuzumab/inmunología , Gemtuzumab/farmacocinética , Células HL-60 , Humanos , Inmunoconjugados/inmunología , Inmunoconjugados/farmacocinética , Subunidad alfa del Receptor de Interleucina-3/inmunología , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/metabolismo , Macaca fascicularis , Ratones , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
13.
J Pharmacol Exp Ther ; 333(1): 2-13, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20089807

RESUMEN

PF-04840082 is a humanized prototype anti-Dickkopf-1 (Dkk-1) immunoglobulin isotype G(2) (IgG(2)) antibody for the treatment of osteoporosis. In vitro, PF-04840082 binds to human, monkey, rat, and mouse Dkk-1 with high affinity. After administration of PF-04840082 to rat and monkey, free Dkk-1 concentrations decreased rapidly and returned to baseline in a dose-dependent manner. In rat and monkey, PF-04840082 exhibited nonlinear pharmacokinetics (PK) and a target-mediated drug disposition (TMDD) model was used to characterize PF-04840082 versus Dkk-1 concentration response relationship. PK/pharmacodynamic (PK/PD) modeling enabled estimation of antibody non-target-mediated elimination, Dkk-1 turnover, complex formation, and complex elimination. The TMDD model was translated to human to predict efficacious dose and minimum anticipated biological effect level (MABEL) by incorporating information on typical IgG(2) human PK, antibody-target association/dissociation rates, Dkk-1 expression, and turnover rates. The PK/PD approach to MABEL was compared with the standard "no adverse effect level" (NOAEL) approach to calculating clinical starting doses and a pharmacological equilibrium method. The NOAEL method gave estimates of dose that were too high to ensure safety of clinical trials. The pharmacological equilibrium approach calculated receptor occupancy (RO) based on equilibrium dissociation constant alone and did not take into account rate of turnover of the target or antibody-target complex kinetics and, as a result, it likely produced a substantial overprediction of RO at a given dose. It was concluded that the calculation of MABEL according to the TMDD model was the most appropriate means for ensuring safety and efficacy in clinical studies.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Péptidos y Proteínas de Señalización Intercelular/inmunología , Modelos Biológicos , Osteoporosis/sangre , Adulto , Anciano , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Enfermedades Óseas Metabólicas/sangre , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Macaca fascicularis , Masculino , Ratones , Persona de Mediana Edad , Osteoporosis/tratamiento farmacológico , Osteoporosis Posmenopáusica/sangre , Ratas , Ratas Sprague-Dawley
14.
Oncotarget ; 11(15): 1344-1357, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32341754

RESUMEN

P-cadherin-LP-DART is a bispecific antibody targeting P-cadherin expressed on the tumor cells and CD3 on the T-cells. Previously we demonstrated the development and efficacy of P-cadherin-LP-DART in in vitro and in vivo models. Here, we evaluated the three pillars: exposure, targeting specificity and pharmacodynamic modulation for P-cadherin-LP-DART using fluorescence molecular tomography (FMT). Bispecific antibodies and T-cells were conjugated with a near-infrared fluorophores: VivoTag®680XL (VT680) and CellVue®NIR815 (CV815), respectively. In vitro binding and cytotoxic T-lymphocyte assay demonstrated that P-cadherin-LP-DART significantly retained its properties after VT680 conjugation. In vivo FMT imaging was performed to determine the bispecific biodistribution and T-cell trafficking in HCT-116 xenograft model. Peak tumor exposure (2.71%ID) was observed at 96 hr post-injection with measurable quantity even at 240 hr (1.46%ID) (Pillar 1). P-cadherin-LP-DART accumulation in tumor was 20-25 fold higher compared to Control-LP-DART demonstrating the targeting specificity (Pillar 2). Imaging after engraftment of CV815 labeled T-cells showed P-cadherin-LP-DART mediated T-cell trafficking in tumors (Pillar 3). This study harnessed the multichannel capability of FMT and demonstrated the targeting of drug and trafficking of T cells to tumors, simultaneously. Our results show the impact of molecular imaging in demonstrating three pillars of pharmacology, longitudinally and non-invasively.

15.
Mol Cancer Ther ; 19(10): 2068-2078, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32747418

RESUMEN

The approval of ado-trastuzumab emtansine (T-DM1) in HER2+ metastatic breast cancer validated HER2 as a target for HER2-specific antibody-drug conjugates (ADC). Despite its demonstrated clinical efficacy, certain inherent properties within T-DM1 hamper this compound from achieving the full potential of targeting HER2-expressing solid tumors with ADCs. Here, we detail the discovery of PF-06804103, an anti-HER2 ADC designed to have a widened therapeutic window compared with T-DM1. We utilized an empirical conjugation site screening campaign to identify the engineered ĸkK183C and K290C residues as those that maximized in vivo ADC stability, efficacy, and safety for a four drug-antibody ratio (DAR) ADC with this linker-payload combination. PF-06804103 incorporates the following novel design elements: (i) a new auristatin payload with optimized pharmacodynamic properties, (ii) a cleavable linker for optimized payload release and enhanced antitumor efficacy, and (iii) an engineered cysteine site-specific conjugation approach that overcomes the traditional safety liabilities of conventional conjugates and generates a homogenous drug product with a DAR of 4. PF-06804103 shows (i) an enhanced efficacy against low HER2-expressing breast, gastric, and lung tumor models, (ii) overcomes in vitro- and in vivo-acquired T-DM1 resistance, and (iii) an improved safety profile by enhancing ADC stability, pharmacokinetic parameters, and reducing off-target toxicities. Herein, we showcase our platform approach in optimizing ADC design, resulting in the generation of the anti-HER2 ADC, PF-06804103. The design elements of identifying novel sites of conjugation employed in this study serve as a platform for developing optimized ADCs against other tumor-specific targets.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Inmunoconjugados/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Gástricas/tratamiento farmacológico , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunoconjugados/farmacología , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Neoplasias Gástricas/patología
16.
Bioanalysis ; 11(12): 1207-1216, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31204868

RESUMEN

Bioanalytical challenges were encountered during developmental and reproductive toxicity studies of tanezumab in cynomolgus monkeys. Possible changes in breast milk composition over the postpartum period potentially complicated assessment of tanezumab concentration in this matrix, requiring validation of the quantification assay across different time intervals. Immunogenicity assessment in maternal serum was complicated by apparent increases in the incidence of antidrug antibody-positive results in treatment-naive samples as pregnancy progressed that were due to changes in the concentration of nerve growth factor, tanezumab's target protein. This was overcome by employing gestational day-specific cut points throughout pregnancy. Researchers should recognize potential challenges associated with dynamic matrices/physiological conditions and anticipate that assays developed under normal conditions may require adaptation for specialized situations.


Asunto(s)
Anticuerpos Monoclonales Humanizados/toxicidad , Pruebas de Química Clínica/métodos , Crecimiento y Desarrollo/efectos de los fármacos , Reproducción/efectos de los fármacos , Animales , Anticuerpos Monoclonales Humanizados/sangre , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacocinética , Cinética , Límite de Detección , Macaca fascicularis , Leche Humana/química , Reproducibilidad de los Resultados
17.
AAPS J ; 21(4): 73, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31165304

RESUMEN

Typesetting error occurred and Figure 1a and Figure 1b were altered during the uploading process. The original article has been corrected.

18.
AAPS J ; 21(4): 66, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31119428

RESUMEN

CD3 bispecific antibody constructs recruit cytolytic T cells to kill tumor cells, offering a potent approach to treat cancer. T cell activation is driven by the formation of a trimolecular complex (trimer) between drugs, T cells, and tumor cells, mimicking an immune synapse. A translational quantitative systems pharmacology (QSP) model is proposed for CD3 bispecific molecules capable of predicting trimer concentration and linking it to tumor cell killing. The model was used to quantify the pharmacokinetic (PK)/pharmacodynamic (PD) relationship of a CD3 bispecific targeting P-cadherin (PF-06671008). It describes the disposition of PF-06671008 in the central compartment and tumor in mouse xenograft models, including binding to target and T cells in the tumor to form the trimer. The model incorporates T cell distribution to the tumor, proliferation, and contraction. PK/PD parameters were estimated for PF-06671008 and a tumor stasis concentration (TSC) was calculated as an estimate of minimum efficacious trimer concentration. TSC values ranged from 0.0092 to 0.064 pM across mouse tumor models. The model was translated to the clinic and used to predict the disposition of PF-06671008 in patients, including the impact of binding to soluble P-cadherin. The predicted terminal half-life of PF-06671008 in the clinic was approximately 1 day, and P-cadherin expression and number of T cells in the tumor were shown to be sensitive parameters impacting clinical efficacy. A translational QSP model is presented for CD3 bispecific molecules, which integrates in silico, in vitro and in vivo data in a mechanistic framework, to quantify and predict efficacy across species.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antineoplásicos/farmacología , Complejo CD3/inmunología , Cadherinas/metabolismo , Modelos Biológicos , Animales , Anticuerpos Biespecíficos/sangre , Anticuerpos Biespecíficos/farmacocinética , Antineoplásicos/sangre , Antineoplásicos/farmacocinética , Células HCT116 , Humanos , Inmunoterapia , Activación de Linfocitos , Macaca fascicularis , Ratones SCID , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Investigación Biomédica Traslacional , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Curr Drug Metab ; 9(9): 854-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18991581

RESUMEN

The binding of a drug to serum or plasma proteins enables the transport of drugs via the blood to sites of action throughout the body. For expediency we will use serum proteins throughout this discussion with the understanding that one can substitute the term plasma proteins in all experimental instances. Only the fraction of drug unbound from serum proteins is available to diffuse from the vascular system and accumulate in tissues thereby enabling interaction with therapeutic targets and accessibility to xenobiotic clearance pathways. Therefore, the extent of drug binding to serum proteins can have a significant impact on pharmacokinetic (PK) parameters such as clearance rates and volume of distribution. In addition, because only the unbound drug is available to interact with therapeutic targets, the extent of serum binding can have significant effects on the pharmacodynamic properties of a compound as well [1, 2] Determining the fraction of drug bound to serum proteins is a standard parameter evaluated in the process of drug discovery. Although the clinical importance of changes in serum protein binding has been questioned [3-8] the need for serum protein binding studies in the discovery and preclinical development stages is essential for the pharmacokinetic modeling of drugs [1, 3, 9]. The extent of serum protein binding is an important parameter used in many in vivo modeling calculations to estimate the volume of distribution, organ clearance, and for scale-up of pharmacokinetic and pharmacodynamic parameters from animal models to humans [3, 10, 11]. The convergence of several trends in the pharmaceutical industry including high speed chemical synthesis technologies, the increasing use of in silico ADME modeling together with early in vivo evaluations of lead compounds has increased the demand for serum protein binding determinations [12].


Asunto(s)
Proteínas Sanguíneas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Algoritmos , Animales , Humanos , Microdiálisis , Unión Proteica
20.
Bioorg Med Chem Lett ; 18(11): 3359-63, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18456494

RESUMEN

Based on a high throughput screening hit, pyrrolopyrimidine inhibitors of the Akt kinase are explored. X-ray co-crystal structures of two lead series results in the understanding of key binding interactions, the design of new lead series, and enhanced potency. The syntheses of these series and their biological activities are described. Spiroindoline 13j is found to have an Akt1 kinase IC(50) of 2.4+/-0.6 nM, Akt cell potency of 50+/-19 nM, and provides 68% inhibition of tumor growth in a mouse xenograft model (50 mg/kg, qd, po).


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pirimidinas/síntesis química , Pirimidinas/farmacología , Pirroles/síntesis química , Pirroles/farmacología , Compuestos de Espiro/síntesis química , Compuestos de Espiro/farmacología , Animales , Antineoplásicos/química , Técnicas Químicas Combinatorias , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Diseño de Fármacos , Concentración 50 Inhibidora , Ratones , Conformación Molecular , Estructura Molecular , Pirimidinas/química , Pirroles/química , Compuestos de Espiro/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA