Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
mBio ; 8(1)2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28174306

RESUMEN

Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS-different from the bacterium's original mutS promoter region-which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. IMPORTANCE: DNA mutations are a double-edged sword. Most mutations are harmful; they can scramble precise genetic sequences honed over thousands of generations. However, in rare cases, mutations also produce beneficial new traits that allow populations to adapt to changing environments. Recent evidence suggests that some bacteria balance this trade-off by altering their mutation rates to suit their environment. To date, however, we know of few mechanisms that allow bacteria to change their mutation rates. We describe one such mechanism, driven by the action of a mobile element, in the marine bacterium Vibrio splendidus 12B01. We also found similar mobile genetic sequences in the mutS genes of many different bacteria, including clinical and agricultural pathogens. These mobile elements might play an as yet unknown role in the evolution of these important bacteria.


Asunto(s)
Organismos Acuáticos/genética , Secuencias Repetitivas Esparcidas , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Mutagénesis Insercional , Vibrio/genética , Tasa de Mutación , Recombinación Genética
2.
ISME J ; 6(12): 2168-77, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22832347

RESUMEN

Hutchinson's fundamental niche, defined by the physical and biological environments in which an organism can thrive in the absence of inter-species interactions, is an important theoretical concept in ecology. However, little is known about the overlap between the fundamental niche and the set of conditions species inhabit in nature, and about natural variation in fundamental niche shape and its change as species adapt to their environment. Here, we develop a custom-made dual gradient apparatus to map a cross-section of the fundamental niche for several marine bacterial species within the genus Vibrio based on their temperature and salinity tolerance, and compare tolerance limits to the environment where these species commonly occur. We interpret these niche shapes in light of a conceptual model comprising five basic niche shapes. We find that the fundamental niche encompasses a much wider set of conditions than those strains typically inhabit, especially for salinity. Moreover, though the conditions that strains typically inhabit agree well with the strains' temperature tolerance, they are negatively correlated with the strains' salinity tolerance. Such relationships can arise when the physiological response to different stressors is coupled, and we present evidence for such a coupling between temperature and salinity tolerance. Finally, comparison with well-documented ecological range in V. vulnificus suggests that biotic interactions limit the occurrence of this species at low-temperature-high-salinity conditions. Our findings highlight the complex interplay between the ecological, physiological and evolutionary determinants of niche morphology, and caution against making inferences based on a single ecological factor.


Asunto(s)
Evolución Biológica , Ecosistema , Modelos Biológicos , Vibrio/fisiología , Ecología/métodos , Filogenia , Salinidad , Temperatura , Vibrio/clasificación , Vibrio/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA