Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37950899

RESUMEN

Pithoviridae are amoeba-infecting giant viruses possessing the largest viral particles known so far. Since the discovery of Pithovirus sibericum, recovered from a 30,000-yr-old permafrost sample, other pithoviruses, and related cedratviruses, were isolated from various terrestrial and aquatic samples. Here, we report the isolation and genome sequencing of 2 Pithoviridae from soil samples, in addition to 3 other recent isolates. Using the 12 available genome sequences, we conducted a thorough comparative genomic study of the Pithoviridae family to decipher the organization and evolution of their genomes. Our study reveals a nonuniform genome organization in 2 main regions: 1 concentrating core genes and another gene duplications. We also found that Pithoviridae genomes are more conservative than other families of giant viruses, with a low and stable proportion (5% to 7%) of genes originating from horizontal transfers. Genome size variation within the family is mainly due to variations in gene duplication rates (from 14% to 28%) and massive invasion by inverted repeats. While these repeated elements are absent from cedratviruses, repeat-rich regions cover as much as a quarter of the pithoviruses genomes. These regions, identified using a dedicated pipeline, are hotspots of mutations, gene capture events, and genomic rearrangements that contribute to their evolution.


Asunto(s)
Genoma Viral , Virus Gigantes , Filogenia , Genómica , Virus Gigantes/genética , Virión/genética , Evolución Molecular
2.
BMC Biol ; 21(1): 139, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337252

RESUMEN

BACKGROUND: Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS: We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS: The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.


Asunto(s)
Genoma , Poríferos , Animales , Poríferos/genética , Poríferos/metabolismo , Genómica , Factores de Transcripción/genética , Transducción de Señal , Filogenia
3.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31996429

RESUMEN

Microbes trapped in permanently frozen paleosoils (permafrost) are the focus of increasing research in the context of global warming. Our previous investigations led to the discovery and reactivation of two Acanthamoeba-infecting giant viruses, Mollivirus sibericum and Pithovirus sibericum, from a 30,000-year old permafrost layer. While several modern pithovirus strains have since been isolated, no contemporary mollivirus relative was found. We now describe Mollivirus kamchatka, a close relative to M. sibericum, isolated from surface soil sampled on the bank of the Kronotsky River in Kamchatka, Russian Federation. This discovery confirms that molliviruses have not gone extinct and are at least present in a distant subarctic continental location. This modern isolate exhibits a nucleocytoplasmic replication cycle identical to that of M. sibericum Its spherical particle (0.6 µm in diameter) encloses a 648-kb GC-rich double-stranded DNA genome coding for 480 proteins, of which 61% are unique to these two molliviruses. The 461 homologous proteins are highly conserved (92% identical residues, on average), despite the presumed stasis of M. sibericum for the last 30,000 years. Selection pressure analyses show that most of these proteins contribute to virus fitness. The comparison of these first two molliviruses clarify their evolutionary relationship with the pandoraviruses, supporting their provisional classification in a distinct family, the Molliviridae, pending the eventual discovery of intermediary missing links better demonstrating their common ancestry.IMPORTANCE Virology has long been viewed through the prism of human, cattle, or plant diseases, leading to a largely incomplete picture of the viral world. The serendipitous discovery of the first giant virus visible under a light microscope (i.e., >0.3 µm in diameter), mimivirus, opened a new era of environmental virology, now incorporating protozoan-infecting viruses. Planet-wide isolation studies and metagenome analyses have shown the presence of giant viruses in most terrestrial and aquatic environments, including upper Pleistocene frozen soils. Those systematic surveys have led authors to propose several new distinct families, including the Mimiviridae, Marseilleviridae, Faustoviridae, Pandoraviridae, and Pithoviridae We now propose to introduce one additional family, the Molliviridae, following the description of M. kamchatka, the first modern relative of M. sibericum, previously isolated from 30,000-year-old arctic permafrost.


Asunto(s)
Virus Gigantes/clasificación , Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación , Filogenia , Acanthamoeba/virología , Virus ADN/clasificación , Virus ADN/genética , Genoma Viral , Genómica , Virus Gigantes/ultraestructura , Mimiviridae/clasificación , Mimiviridae/genética , Federación de Rusia , Microbiología del Suelo , Virión/genética , Virión/ultraestructura , Virus no Clasificados/clasificación , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación
4.
J Virol ; 93(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31534042

RESUMEN

Pandoraviridae is a rapidly growing family of giant viruses, all of which have been isolated using laboratory strains of Acanthamoeba The genomes of 10 distinct strains have been fully characterized, reaching up to 2.5 Mb in size. These double-stranded DNA genomes encode the largest of all known viral proteomes and are propagated in oblate virions that are among the largest ever described (1.2 µm long and 0.5 µm wide). The evolutionary origin of these atypical viruses is the object of numerous speculations. Applying the chaos game representation to the pandoravirus genome sequences, we discovered that the tetranucleotide (4-mer) "AGCT" is totally absent from the genomes of 2 strains (Pandoravirus dulcis and Pandoravirus quercus) and strongly underrepresented in others. Given the amazingly low probability of such an observation in the corresponding randomized sequences, we investigated its biological significance through a comprehensive study of the 4-mer compositions of all viral genomes. Our results indicate that AGCT was specifically eliminated during the evolution of the Pandoraviridae and that none of the previously proposed host-virus antagonistic relationships could explain this phenomenon. Unlike the three other families of giant viruses (Mimiviridae, Pithoviridae, and Molliviridae) infecting the same Acanthamoeba host, the pandoraviruses exhibit a puzzling genomic anomaly suggesting a highly specific DNA editing in response to a new kind of strong evolutionary pressure.IMPORTANCE Recent years have seen the discovery of several families of giant DNA viruses infecting the ubiquitous amoebozoa of the genus Acanthamoeba With double-stranded DNA (dsDNA) genomes reaching 2.5 Mb in length packaged in oblate particles the size of a bacterium, the pandoraviruses are currently the most complex and largest viruses known. In addition to their spectacular dimensions, the pandoraviruses encode the largest proportion of proteins without homologs in other organisms, which is thought to result from a de novo gene creation process. While using comparative genomics to investigate the evolutionary forces responsible for the emergence of such an unusual giant virus family, we discovered a unique bias in the tetranucleotide composition of the pandoravirus genomes that can result only from an undescribed evolutionary process not encountered in any other microorganism.


Asunto(s)
Acanthamoeba/virología , Virus Gigantes/clasificación , Virus Gigantes/genética , Virus Gigantes/fisiología , Secuencia de Bases , Virus ADN/genética , Evolución Molecular , Edición Génica , Genoma Viral , Interacciones Huésped-Patógeno/fisiología , Mimiviridae/genética , Virión/genética
5.
Bioinformatics ; 35(1): 170-171, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30020402

RESUMEN

Motivation: More than 20 years ago, our laboratory published an original statistical test [referred to as the Audic-Claverie (AC) test in the literature] to identify differentially expressed genes from the pairwise comparison of counts of 'expressed sequence tags' determined in different conditions. Despite its antiquity and the publications of more sophisticated packages, this original publication continued to gather more than 200 citations per year, indicating the persistent usefulness of the simple AC test for the community. This prompted us to propose a fully revamped version of the AC test with a user interface adapted to the diverse and much larger datasets produced by contemporary omics techniques. Results: ACDtool is a freely accessible web-service proposing three types of analyses: (i) the pairwise comparison of individual counts, (ii) pairwise comparisons of arbitrary large lists of counts and (iii) the all-at-once pairwise comparisons of multiple datasets. Statistical computations are implemented using standard R functions and can accommodate all practical ranges of counts as generated by modern omic experiments. ACDtool is well suited for large datasets without replicates. Availability and implementation: http://www.igs.cnrs-mrs.fr/acdtool/. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Internet , Programas Informáticos , Etiquetas de Secuencia Expresada
6.
Virologie (Montrouge) ; 24(2): 23-25, 2020 04 01.
Artículo en Francés | MEDLINE | ID: mdl-32540825

RESUMEN

If they work as expected, the strict containment measures enforced to stop the French Covid-19 epidemic will leave a large proportion of the population "naive" about the SARS-CoV-2 virus. In these conditions, how can we prevent the epidemic from rebounding, at a time when this restrictive policy will soon become untenable economically and socially? Based on the figures, now well known, of the lethality of covid-19 according to age classes, I suggest that a gradual release of the containment be instituted, which will keep retirees in isolation (the 65+ age class), whose risk is maximal and the impact on economic production the lowest. This scenario might be applicable to most European countries that enforce mandatory retirement ages for most of workers.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/economía , Infecciones por Coronavirus/prevención & control , Pandemias/economía , Pandemias/prevención & control , Neumonía Viral/economía , Neumonía Viral/prevención & control , Política Pública/economía , Cuarentena , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/mortalidad , Francia/epidemiología , Humanos , Neumonía Viral/epidemiología , Neumonía Viral/mortalidad , Cuarentena/economía , SARS-CoV-2
7.
Virologie (Montrouge) ; 24(2): 75-77, 2020 04 01.
Artículo en Francés | MEDLINE | ID: mdl-32540828

RESUMEN

If they work as expected, the strict containment measures enforced to stop the French Covid-19 epidemic will leave a large proportion of the population "naive" about the SARS-CoV-2 virus. In these conditions, how can we prevent the epidemic from rebounding, at a time when this restrictive policy will soon become untenable economically and socially? Based on the figures, now well known, of the lethality of covid-19 according to age classes, I suggest that a gradual release of the containment be instituted, which will keep retirees in isolation (the 65+ age class), whose risk is maximal and the impact on economic production the lowest. This scenario might be applicable to most European countries that enforce mandatory retirement ages for most of workers.

8.
Nature ; 499(7457): 209-13, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23760476

RESUMEN

Coccolithophores have influenced the global climate for over 200 million years. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.


Asunto(s)
Genoma/genética , Haptophyta/genética , Haptophyta/aislamiento & purificación , Fitoplancton/genética , Calcificación Fisiológica , Calcio/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Ecosistema , Haptophyta/clasificación , Haptophyta/metabolismo , Océanos y Mares , Filogenia , Proteoma/genética , Agua de Mar
9.
BMC Genomics ; 19(1): 393, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29793430

RESUMEN

BACKGROUND: The emergence of epithelia was the foundation of metazoan expansion. Epithelial tissues are a hallmark of metazoans deeply rooted in the evolution of their complex developmental morphogenesis processes. However, studies on the epithelial features of non-bilaterians are still sparse and it remains unclear whether the last common metazoan ancestor possessed a fully functional epithelial toolkit or if it was acquired later during metazoan evolution. RESULTS: To investigate the early evolution of animal epithelia, we sequenced the genome and transcriptomes of two new sponge species to characterize epithelial markers such as the E-cadherin complex and the polarity complexes for all classes (Calcarea, Demospongiae, Hexactinellida, Homoscleromorpha) of sponges (phylum Porifera) and compare them with their homologues in Placozoa and in Ctenophora. We found that Placozoa and most sponges possess orthologues of all essential genes encoding proteins characteristic of bilaterian epithelial cells, as well as their conserved interaction domains. In stark contrast, we found that ctenophores lack several major polarity complex components such as the Crumbs complex and Scribble. Furthermore, the E-cadherin ctenophore orthologue exhibits a divergent cytoplasmic domain making it unlikely to interact with its canonical cytoplasmic partners. CONCLUSIONS: These unexpected findings challenge the current evolutionary paradigm on the emergence of epithelia. Altogether, our results raise doubt on the homology of protein complexes and structures involved in cell polarity and adhesive-type junctions between Ctenophora and Bilateria epithelia.


Asunto(s)
Epitelio/metabolismo , Evolución Molecular , Genómica , Uniones Adherentes/metabolismo , Secuencia de Aminoácidos , Animales , Cadherinas/química , Cadherinas/genética , Cadherinas/metabolismo , Ctenóforos/genética , Ctenóforos/metabolismo , Poríferos/genética , Poríferos/metabolismo , Dominios Proteicos
10.
Environ Microbiol ; 20(10): 3601-3615, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30063098

RESUMEN

Most of our knowledge on the mechanisms underlying diatom-bacterial interactions has been acquired through studies involving isolation of culturable partners. Here, we established a laboratory model of intermediate complexity between complex natural communities and laboratory pure culture models. We investigated the whole community formed by the freshwater diatom Asterionella formosa and its associated bacteria in a laboratory context, including both culturable and unculturable bacteria. Combining cellular and molecular approaches, we showed that in laboratory cultures, A. formosa microbiome was dynamic and comprised of numerous bacterial species (mainly Proteobacteria and Bacteroidetes). Using metagenomics, we explored several metabolic potentials present within the bacterial community. Our analyses suggested that bacteria were heterotrophic although a third of them (Alpha- and Beta-proteobacteria) could also be phototrophic. About 60% of the bacteria, phylogenetically diverse, could metabolize glycolate. The capacity to synthesize molecules such as B vitamins appeared unevenly distributed among bacteria. Altogether, our results brought insights into the bacterial diversity found in diatom-bacterial communities and hinted at metabolic interdependencies within the community that could result in diatom-bacterial and bacterial-bacterial interactions. The present work allowed us to explore the functional architecture of the bacterial community associated with A. formosa in culture and is complementary to field studies.


Asunto(s)
Bacterias/aislamiento & purificación , Diatomeas/microbiología , Microbiota , Bacteroidetes/aislamiento & purificación , Agua Dulce , Procesos Heterotróficos , Filogenia , Proteobacteria/aislamiento & purificación , Taiwán
11.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28446675

RESUMEN

Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae Haptolina ericina, formerly Chrysochromulina ericina), is phylogenetically related to members of the Mimiviridae family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes. This family was later split into two genera (Mimivirus and Cafeteriavirus) following the characterization of a virus infecting the heterotrophic stramenopile Cafeteria roenbergensis (CroV). CeV, as well as two of its close relatives, which infect the unicellular photosynthetic eukaryotes Phaeocystis globosa (Phaeocystis globosa virus [PgV]) and Aureococcus anophagefferens (Aureococcus anophagefferens virus [AaV]), are currently unclassified by the International Committee on Viral Taxonomy (ICTV). The detailed comparative analysis of the CeV genome presented here confirms the phylogenetic affinity of this emerging group of microalga-infecting viruses with the Mimiviridae but argues in favor of their classification inside a distinct clade within the family. Although CeV, PgV, and AaV share more common features among them than with the larger Mimiviridae, they also exhibit a large complement of unique genes, attesting to their complex evolutionary history. We identified several gene fusion events and cases of convergent evolution involving independent lateral gene acquisitions. Finally, CeV possesses an unusual number of inteins, some of which are closely related despite being inserted in nonhomologous genes. This appears to contradict the paradigm of allele-specific inteins and suggests that the Mimiviridae are especially efficient in spreading inteins while enlarging their repertoire of homing genes.IMPORTANCE Although it infects the microalga Chrysochromulina ericina, CeV is more closely related to acanthamoeba-infecting viruses of the Mimiviridae family than to any member of the Phycodnaviridae, the ICTV-approved family historically including all alga-infecting large dsDNA viruses. CeV, as well as its relatives that infect the microalgae Phaeocystic globosa (PgV) and Aureococcus anophagefferens (AaV), remains officially unclassified and a source of confusion in the literature. Our comparative analysis of the CeV genome in the context of this emerging group of alga-infecting viruses suggests that they belong to a distinct clade within the established Mimiviridae family. The presence of a large number of unique genes as well as specific gene fusion events, evolutionary convergences, and inteins integrated at unusual locations document the complex evolutionary history of the CeV lineage.


Asunto(s)
Evolución Molecular , Genoma Viral , Mimiviridae/clasificación , Mimiviridae/genética , Phycodnaviridae/clasificación , Phycodnaviridae/genética , Filogenia , Análisis por Conglomerados , Análisis de Secuencia de ADN , Homología de Secuencia
12.
Proc Natl Acad Sci U S A ; 112(38): E5327-35, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26351664

RESUMEN

Acanthamoeba species are infected by the largest known DNA viruses. These include icosahedral Mimiviruses, amphora-shaped Pandoraviruses, and Pithovirus sibericum, the latter one isolated from 30,000-y-old permafrost. Mollivirus sibericum, a fourth type of giant virus, was isolated from the same permafrost sample. Its approximately spherical virion (0.6-µm diameter) encloses a 651-kb GC-rich genome encoding 523 proteins of which 64% are ORFans; 16% have their closest homolog in Pandoraviruses and 10% in Acanthamoeba castellanii probably through horizontal gene transfer. The Mollivirus nucleocytoplasmic replication cycle was analyzed using a combination of "omic" approaches that revealed how the virus highjacks its host machinery to actively replicate. Surprisingly, the host's ribosomal proteins are packaged in the virion. Metagenomic analysis of the permafrost sample uncovered the presence of both viruses, yet in very low amount. The fact that two different viruses retain their infectivity in prehistorical permafrost layers should be of concern in a context of global warming. Giant viruses' diversity remains to be fully explored.


Asunto(s)
Acanthamoeba/virología , Virus/genética , Acanthamoeba castellanii/virología , Evolución Biológica , Clonación Molecular , Biología Computacional , Replicación del ADN , Biblioteca de Genes , Transferencia de Gen Horizontal , Genoma Viral , Genómica , Calentamiento Global , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Familia de Multigenes , Hielos Perennes , Filogenia , Proteoma , Proteómica/métodos , Análisis de Secuencia de ADN , Proteínas Virales/genética , Virión/genética
13.
Proc Natl Acad Sci U S A ; 112(44): 13615-20, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483451

RESUMEN

The protein-coding exome of a patient with a monogenic disease contains about 20,000 variants, only one or two of which are disease causing. We found that 58% of rare variants in the protein-coding exome of the general population are located in only 2% of the genes. Prompted by this observation, we aimed to develop a gene-level approach for predicting whether a given human protein-coding gene is likely to harbor disease-causing mutations. To this end, we derived the gene damage index (GDI): a genome-wide, gene-level metric of the mutational damage that has accumulated in the general population. We found that the GDI was correlated with selective evolutionary pressure, protein complexity, coding sequence length, and the number of paralogs. We compared GDI with the leading gene-level approaches, genic intolerance, and de novo excess, and demonstrated that GDI performed best for the detection of false positives (i.e., removing exome variants in genes irrelevant to disease), whereas genic intolerance and de novo excess performed better for the detection of true positives (i.e., assessing de novo mutations in genes likely to be disease causing). The GDI server, data, and software are freely available to noncommercial users from lab.rockefeller.edu/casanova/GDI.


Asunto(s)
Exoma , Enfermedades Genéticas Congénitas/genética , Humanos , Curva ROC
15.
Annu Rev Genet ; 43: 49-66, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19653859

RESUMEN

Mimivirus, a virus infecting amoebae of the acanthamoeba genus, is the prototype member of the Mimiviridae, the latest addition to the family of the nucleocytoplasmic large DNA viruses, already including the Poxviridae, the Iridoviridae, the Asfarviridae, and the Phycodnaviridae. Because of the size of its particle-a fiber-covered icosahedral protein capsid 0.75 microm in diameter-Mimivirus was initially mistaken for a parasitic bacterium. Its 1.2-Mb genome sequence encodes more than 900 proteins, many of them associated with functions never before encountered in a virus, such as four aminoacyl-tRNA synthetases. These findings revived the debate about the origin of DNA viruses and their possible role in the emergence of the eukaryotic nucleus. The recent isolation of a new type of satellite virus, called a virophage, associated with a second strain of Mimivirus, confirmed its unique position within the virus world. Post-genomic studies are now in progress, slowly shedding some light on the physiology of the most complex virus isolated to date.


Asunto(s)
Acanthamoeba/virología , Mimiviridae/genética , Genoma Viral , Humanos , Metagenómica , Mimiviridae/química
16.
Nature ; 470(7332): 78-81, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21293374

RESUMEN

X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.


Asunto(s)
Mimiviridae/química , Difracción de Rayos X/instrumentación , Difracción de Rayos X/métodos , Electrones , Calor , Rayos Láser , Fotones , Factores de Tiempo , Rayos X
17.
Nucleic Acids Res ; 43(7): 3776-88, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25779049

RESUMEN

Giant viruses from the Mimiviridae family replicate entirely in their host cytoplasm where their genes are transcribed by a viral transcription apparatus. mRNA polyadenylation uniquely occurs at hairpin-forming palindromic sequences terminating viral transcripts. Here we show that a conserved gene cluster both encode the enzyme responsible for the hairpin cleavage and the viral polyA polymerases (vPAP). Unexpectedly, the vPAPs are homodimeric and uniquely self-processive. The vPAP backbone structures exhibit a symmetrical architecture with two subdomains sharing a nucleotidyltransferase topology, suggesting that vPAPs originate from an ancestral duplication. A Poxvirus processivity factor homologue encoded by Megavirus chilensis displays a conserved 5'-GpppA 2'O methyltransferase activity but is also able to internally methylate the mRNAs' polyA tails. These findings elucidate how the arm wrestling between hosts and their viruses to access the translation machinery is taking place in Mimiviridae.


Asunto(s)
Mimiviridae/genética , ARN Mensajero/genética , ARN Viral/genética , Secuencia de Bases , Cartilla de ADN , Familia de Multigenes
18.
Proc Natl Acad Sci U S A ; 111(11): 4274-9, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591590

RESUMEN

The largest known DNA viruses infect Acanthamoeba and belong to two markedly different families. The Megaviridae exhibit pseudo-icosahedral virions up to 0.7 µm in diameter and adenine-thymine (AT)-rich genomes of up to 1.25 Mb encoding a thousand proteins. Like their Mimivirus prototype discovered 10 y ago, they entirely replicate within cytoplasmic virion factories. In contrast, the recently discovered Pandoraviruses exhibit larger amphora-shaped virions 1 µm in length and guanine-cytosine-rich genomes up to 2.8 Mb long encoding up to 2,500 proteins. Their replication involves the host nucleus. Whereas the Megaviridae share some general features with the previously described icosahedral large DNA viruses, the Pandoraviruses appear unrelated to them. Here we report the discovery of a third type of giant virus combining an even larger pandoravirus-like particle 1.5 µm in length with a surprisingly smaller 600 kb AT-rich genome, a gene content more similar to Iridoviruses and Marseillevirus, and a fully cytoplasmic replication reminiscent of the Megaviridae. This suggests that pandoravirus-like particles may be associated with a variety of virus families more diverse than previously envisioned. This giant virus, named Pithovirus sibericum, was isolated from a >30,000-y-old radiocarbon-dated sample when we initiated a survey of the virome of Siberian permafrost. The revival of such an ancestral amoeba-infecting virus used as a safe indicator of the possible presence of pathogenic DNA viruses, suggests that the thawing of permafrost either from global warming or industrial exploitation of circumpolar regions might not be exempt from future threats to human or animal health.


Asunto(s)
Amoeba/virología , Virus ADN/genética , Virus ADN/ultraestructura , Filogenia , Microbiología del Suelo , Secuencia de Bases , Análisis por Conglomerados , Biología Computacional , Virus ADN/clasificación , Perfilación de la Expresión Génica , Microscopía Electrónica , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Proteómica , Análisis de Secuencia de ADN , Siberia
19.
J Virol ; 89(1): 824-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355875

RESUMEN

UNLABELLED: Giant viruses able to replicate in Acanthamoeba castellanii penetrate their host through phagocytosis. After capsid opening, a fusion between the internal membranes of the virion and the phagocytic vacuole triggers the transfer in the cytoplasm of the viral DNA together with the DNA repair enzymes and the transcription machinery present in the particles. In addition, the proteome analysis of purified mimivirus virions revealed the presence of many enzymes meant to resist oxidative stress and conserved in the Mimiviridae. Megavirus chilensis encodes a predicted copper, zinc superoxide dismutase (Cu,Zn-SOD), an enzyme known to detoxify reactive oxygen species released in the course of host defense reactions. While it was thought that the metal ions are required for the formation of the active-site lid and dimer stabilization, megavirus chilensis SOD forms a very stable metal-free dimer. We used electron paramagnetic resonance (EPR) analysis and activity measurements to show that the supplementation of the bacterial culture with copper and zinc during the recombinant expression of Mg277 is sufficient to restore a fully active holoenzyme. These results demonstrate that the viral enzyme's activation is independent of a chaperone both for disulfide bridge formation and for copper incorporation and suggest that its assembly may not be as regulated as that of its cellular counterparts. A SOD protein is encoded by a variety of DNA viruses but is absent from mimivirus. As in poxviruses, the enzyme might be dispensable when the virus infects Acanthamoeba cells but may allow megavirus chilensis to infect a broad range of eukaryotic hosts. IMPORTANCE: Mimiviridae are giant viruses encoding more than 1,000 proteins. The virion particles are loaded with proteins used by the virus to resist the vacuole's oxidative stress. The megavirus chilensis virion contains a predicted copper, zinc superoxide dismutase (Cu,Zn-SOD). The corresponding gene is present in some megavirus chilensis relatives but is absent from mimivirus. This first crystallographic structure of a viral Cu,Zn-SOD highlights the features that it has in common with and its differences from cellular SODs. It corresponds to a very stable dimer of the apo form of the enzyme. We demonstrate that upon supplementation of the growth medium with Cu and Zn, the recombinant protein is fully active, suggesting that the virus's SOD activation is independent of a copper chaperone for SOD generally used by eukaryotic SODs.


Asunto(s)
Mimiviridae/química , Mimiviridae/enzimología , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Superóxido Dismutasa/genética , Proteínas Virales/genética
20.
Proc Natl Acad Sci U S A ; 110(26): 10800-5, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23754393

RESUMEN

Large dsDNA viruses are involved in the population control of many globally distributed species of eukaryotic phytoplankton and have a prominent role in bloom termination. The genus Phaeocystis (Haptophyta, Prymnesiophyceae) includes several high-biomass-forming phytoplankton species, such as Phaeocystis globosa, the blooms of which occur mostly in the coastal zone of the North Atlantic and the North Sea. Here, we report the 459,984-bp-long genome sequence of P. globosa virus strain PgV-16T, encoding 434 proteins and eight tRNAs and, thus, the largest fully sequenced genome to date among viruses infecting algae. Surprisingly, PgV-16T exhibits no phylogenetic affinity with other viruses infecting microalgae (e.g., phycodnaviruses), including those infecting Emiliania huxleyi, another ubiquitous bloom-forming haptophyte. Rather, PgV-16T belongs to an emerging clade (the Megaviridae) clustering the viruses endowed with the largest known genomes, including Megavirus, Mimivirus (both infecting acanthamoeba), and a virus infecting the marine microflagellate grazer Cafeteria roenbergensis. Seventy-five percent of the best matches of PgV-16T-predicted proteins correspond to two viruses [Organic Lake phycodnavirus (OLPV)1 and OLPV2] from a hypersaline lake in Antarctica (Organic Lake), the hosts of which are unknown. As for OLPVs and other Megaviridae, the PgV-16T sequence data revealed the presence of a virophage-like genome. However, no virophage particle was detected in infected P. globosa cultures. The presence of many genes found only in Megaviridae in its genome and the presence of an associated virophage strongly suggest that PgV-16T shares a common ancestry with the largest known dsDNA viruses, the host range of which already encompasses the earliest diverging branches of domain Eukarya.


Asunto(s)
Genoma Viral , Haptophyta/virología , Phycodnaviridae/genética , Mapeo Cromosómico , Duplicación de Gen , Haptophyta/ultraestructura , Datos de Secuencia Molecular , Phycodnaviridae/clasificación , Phycodnaviridae/ultraestructura , Filogenia , Fitoplancton/ultraestructura , Fitoplancton/virología , Proteoma , Retroelementos , Virus Satélites/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA