Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 124(Pt 7): 1055-66, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21363887

RESUMEN

Traffic from the trans-Golgi network to the plasma membrane is thought to occur through at least two different independent pathways. The chitin synthase Chs3p requires the exomer complex and Arf1p to reach the bud neck of yeast cells in a cell-cycle-dependent manner, whereas the hexose transporter Hxt2p localizes over the entire plasma membrane independently of the exomer complex. Here, we conducted a visual screen for communalities and differences between the exomer-dependent and exomer-independent transport to the plasma membrane in Saccharomyces cerevisiae. We found that most of the components that are required for the fusion of transport vesicles with the plasma membrane, are involved in localization of both Chs3p and Hxt2p. However, the lethal giant larva homologue Sro7p is required primarily for the targeting of Chs3p, and not Hxt2p or other cargoes such as Itr1p, Cwp2p and Pma1p. Interestingly, this transport defect was more pronounced in large-budded cells just before cytokinesis than in small-budded cells. In addition, we found that the yeast Rab11 homologue Ypt31p determines the residence time of Chs3p in the bud neck of small-budded, but not large-budded, cells. We propose that transport to and from the bud neck is regulated differently in small- and large-budded cells, and differs early and late in the cell cycle.


Asunto(s)
Ciclo Celular , Membrana Celular/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/genética , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell Rep ; 5(4): 1036-46, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24239358

RESUMEN

Very long chain fatty acids (VLCFAs) are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cell's metabolic demand remains unknown. The goal of this study was to identify mechanisms that regulate the rate of VLCFA synthesis, and we discovered that the fatty acid elongase Elo2 is regulated by phosphorylation. Elo2 phosphorylation is induced upon inhibition of TORC1 and requires GSK3. Expression of nonphosphorylatable Elo2 profoundly alters the ceramide spectrum, reflecting aberrant VLCFA synthesis. Furthermore, VLCFA depletion results in constitutive activation of autophagy, which requires sphingoid base phosphorylation. This constitutive activation of autophagy diminishes cell survival, indicating that VLCFAs serve to dampen the amplitude of autophagy. Together, our data reveal a function for TORC1 and GSK3 in the regulation of VLCFA synthesis that has important implications for autophagy and cell homeostasis.


Asunto(s)
Acetiltransferasas/metabolismo , Ácidos Grasos Esenciales/biosíntesis , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Acetiltransferasas/biosíntesis , Autofagia , Supervivencia Celular , Ceramidas/biosíntesis , Proteínas de la Membrana/biosíntesis , Fosforilación , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/biosíntesis , Factores de Transcripción/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA