RESUMEN
There is a large diversity of eukaryotic symbionts of copepods, dominated by epizootic protists such as ciliates, and metazoan parasites. Eukaryotic endoparasites, copepod-associated bacteria, and viruses are less well known, partly due to technical limitations. However, new molecular techniques, combined with a range of other approaches, provide a complementary toolkit for understanding the complete symbiome of copepods and how the symbiome relates to their ecological roles, relationships with other biota, and responses to environmental change. In this review we provide the most complete overview of the copepod symbiome to date, including microeukaryotes, metazoan parasites, bacteria, and viruses, and provide extensive literature databases to inform future studies.
Asunto(s)
Copépodos , Simbiosis , Animales , Copépodos/microbiología , Copépodos/parasitología , Copépodos/virología , Ecosistema , Eucariontes/genética , Microbiota/genéticaRESUMEN
Ice is one of the most important drivers of population dynamics in polar organisms, influencing the locations, sizes, and connectivity of populations. Antarctic fur seals, Arctocephalus gazella, are particularly interesting in this regard, as they are concomitantly reliant on both ice-associated prey and ice-free coastal breeding areas. We reconstructed the history of this species through the Last Glacial Maximum (LGM) using genomic sequence data from seals across their range. Population size trends and divergence events were investigated using continuous-time size estimation analysis and divergence time estimation models. The combined results indicated that a panmictic population present prior to the LGM split into two small refugial populations during peak ice extent. Following ice decline, the western refugial population founded colonies at the South Shetlands, South Georgia, and Bouvetøya, while the eastern refugial population founded the colony on Iles Kerguelen. Postglacial population divergence times closely match geological estimates of when these coastal breeding areas became ice free. Given the predictions regarding continued future warming in polar oceans, these responses of Antarctic fur seals to past climate variation suggest it may be worthwhile giving conservation consideration to potential future breeding locations, such as areas further south along the Antarctic Peninsula, in addition to present colony areas.
RESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Understanding the effects of human exploitation on the genetic composition of wild populations is important for predicting species persistence and adaptive potential. We therefore investigated the genetic legacy of large-scale commercial harvesting by reconstructing, on a global scale, the recent demographic history of the Antarctic fur seal (Arctocephalus gazella), a species that was hunted to the brink of extinction by 18th and 19th century sealers. Molecular genetic data from over 2,000 individuals sampled from all eight major breeding locations across the species' circumpolar geographic distribution, show that at least four relict populations around Antarctica survived commercial hunting. Coalescent simulations suggest that all of these populations experienced severe bottlenecks down to effective population sizes of around 150-200. Nevertheless, comparably high levels of neutral genetic variability were retained as these declines are unlikely to have been strong enough to deplete allelic richness by more than around 15%. These findings suggest that even dramatic short-term declines need not necessarily result in major losses of diversity, and explain the apparent contradiction between the high genetic diversity of this species and its extreme exploitation history.