Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30988153

RESUMEN

Urinary biomarkers are superior to serum creatinine for defining onset and extent of kidney injury. This study classifies the temporal predictive ability of biomarkers for vancomycin-induced kidney injury (VIKI) as defined by histopathologic damage. Male Sprague-Dawley rats (n = 125) were randomized to receive 150 to 400 mg/kg of body weight/day vancomycin via once or twice daily intraperitoneal injection over 1, 3, or 6 days. Urine was collected once during the 24 h prior to euthanasia or twice for rats treated for 6 days. Receiver operating characteristic (ROC) curves were employed to assess the urinary biomarker performances of kidney injury molecule 1 (KIM-1), clusterin, osteopontin (OPN), cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL) to predict histopathologically defined VIKI (using a national standard pathological assessment scheme from hematoxylin and eosin stained kidneys). Urinary KIM-1, clusterin, and OPN outperformed cystatin C and NGAL with regard to sensitivity and specificity. For the earliest injury, urinary KIM-1 (area under the receiver operating characteristic curve [AUC], 0.662; P < 0.001) and clusterin (AUC, 0.706; P < 0.001) were the most sensitive for predicting even low-level histopathologic damage at 24 h compared to NGAL. KIM-1 and clusterin are the earliest and most sensitive predictors of VIKI. As injury progresses, KIM-1, clusterin, and OPN best define the extent of damage.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/orina , Biomarcadores/orina , Moléculas de Adhesión Celular/orina , Vancomicina/efectos adversos , Animales , Cistatina C/orina , Lipocalina 2/orina , Masculino , Osteopontina/orina , Curva ROC , Ratas , Ratas Sprague-Dawley
2.
Artículo en Inglés | MEDLINE | ID: mdl-28807910

RESUMEN

Vancomycin has been associated with acute kidney injury in preclinical and clinical settings; however, the precise exposure profiles associated with vancomycin-induced acute kidney injury have not been defined. We sought to determine pharmacokinetic/pharmacodynamics indices associated with the development of acute kidney injury using sensitive urinary biomarkers. Male Sprague-Dawley rats received clinical-grade vancomycin or normal saline as an intraperitoneal injection. Total daily doses between 0 and 400 mg/kg of body weight were administered as a single dose or 2 divided doses over a 24-h period. At least five rats were utilized for each dosing protocol. A maximum of 8 plasma samples per rat were obtained, and urine was collected over the 24-h period. Kidney injury molecule-1 (KIM-1), clusterin, osteopontin, cystatin C, and neutrophil gelatinase-associated lipocalin levels were determined using Milliplex multianalyte profiling rat kidney panels. Vancomycin plasma concentrations were determined via a validated high-performance liquid chromatography methodology. Pharmacokinetic analyses were conducted using the Pmetrics package for R. Bayesian maximal a posteriori concentrations were generated and utilized to calculate the 24-h area under the concentration-time curve (AUC), the maximum concentration (Cmax), and the minimum concentration. Spearman's rank correlation coefficient (rs ) was used to assess the correlations between exposure parameters, biomarkers, and histopathological damage. Forty-seven rats contributed pharmacokinetic and toxicodynamic data. KIM-1 was the only urinary biomarker that correlated with both composite histopathological damage (rs = 0.348, P = 0.017) and proximal tubule damage (rs = 0.342, P = 0.019). The vancomycin AUC and Cmax were most predictive of increases in KIM-1 levels (rs = 0.438 and P = 0.002 for AUC and rs = 0.451 and P = 0.002 for Cmax). Novel urinary biomarkers demonstrate that kidney injury can occur within 24 h of vancomycin exposure as a function of either AUC or Cmax.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Antibacterianos/efectos adversos , Antibacterianos/farmacocinética , Vancomicina , Animales , Área Bajo la Curva , Biomarcadores/sangre , Biomarcadores/orina , Moléculas de Adhesión Celular/sangre , Clusterina/sangre , Cistatina C/sangre , Lipocalina 2/sangre , Masculino , Osteopontina/sangre , Ratas , Ratas Sprague-Dawley , Vancomicina/efectos adversos , Vancomicina/sangre , Vancomicina/farmacocinética
3.
Antimicrob Agents Chemother ; 60(10): 5742-51, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27431226

RESUMEN

Vancomycin has been associated with acute kidney injury (AKI). However, the pharmacokinetic/toxicodynamic relationship for AKI is not well defined. Allometrically scaled vancomycin exposures were used to assess the relationship between vancomycin exposure and AKI. Male Sprague-Dawley rats received clinical-grade vancomycin in normal saline (NS) as intraperitoneal (i.p.) injections for 24- to 72-h durations with doses ranging 0 to 200 mg/kg of body weight divided once or twice daily. Urine was collected over the protocol's final 24 h. Renal histopathology was qualitatively scored. Urinary biomarkers (e.g., cystatin C, clusterin, kidney injury molecule 1 [KIM-1], osteopontin, lipocalin 2/neutrophil gelatinase-associated lipocalin 2) were assayed using a Luminex xMAP system. Plasma vancomycin concentrations were assayed by high-performance liquid chromatography with UV detection. A three-compartment vancomycin pharmacokinetic model was fit to the data with the Pmetrics package for R. The exposure-response in the first 24 h was evaluated using Spearman's nonparametric correlation coefficient (rs) values for the area under the concentration-time curve during the first 24 h (AUC0-24), the maximum concentration in plasma during the first 24 h (Cmax0-24 ), and the lowest (minimum) concentration in plasma after the dose closest to 24 h (Cmin0-24 ). A total of 52 rats received vancomycin (n = 42) or NS (n = 10). The strongest exposure-response correlations were observed between AUC0-24 and Cmax0-24 and urinary AKI biomarkers. Exposure-response correlations (rs values) for AUC0-24, Cmax0-24 , and Cmin0-24 were 0.37, 0.39, and 0.22, respectively, for clusterin; 0.42, 0.45, and 0.26, respectively, for KIM-1; and 0.52, 0.55, and 0.42, respectively, for osteopontin. However, no differences in histopathological scores were observed. Optimal sampling times after administration of the i.p. dose were 0.25, 0.75, 2.75, and 8 h for the once-daily dosing schemes and 0.25, 1.25, 14.5, and 17.25 h for the twice-daily dosing schemes. Our observations suggest that AUC0-24 or Cmax0-24 correlates with increases in urinary AKI biomarkers.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/orina , Biomarcadores/orina , Vancomicina/efectos adversos , Vancomicina/farmacocinética , Animales , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Ratas Sprague-Dawley
5.
Int J Antimicrob Agents ; 51(2): 239-243, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28803934

RESUMEN

BACKGROUND: Although the exposure-dependent efficacy thresholds of vancomycin have been probed, less is known about acute kidney injury (AKI) thresholds for this drug. Sensitive urinary biomarkers, such as kidney injury molecule 1 (KIM-1), have shown high sensitivity and specificity for vancomycin-associated AKI. The aims of the study were to determine if there were dose-response curves with urinary KIM-1, and to evaluate the impact of therapy duration and sex on observed relationships. METHODS: A systematic review was conducted via PubMed/MEDLINE. Data were compiled from preclinical studies that reported individual subject data for urinary KIM-1 concentrations, vancomycin dose (mg/kg), duration of treatment, and sex. Sigmoidal Hill-type models were fit to the individual dose-response data. RESULTS: A total of 15 studies were identified, 6 of which reported vancomycin dose and KIM-1 data. Of these, three included individual animal-level data suitable for analysis. For all pooled rats, increasing total daily vancomycin doses displayed a dose-response curve with urinary KIM-1 concentrations (50% maximal toxic response=130.4 mg/kg/day). Dose-response curves were shifted left for females vs. males (P = 0.05) and for long (i.e. ≥7 days) vs. short (i.e. <4 days) duration of vancomycin therapy (P=0.02). CONCLUSIONS: The collective findings demonstrate a clear dose-response relationship between vancomycin dose and AKI. As these analyses focused exclusively on dose-response relationships, additional preclinical data are needed to more clearly define vancomycin exposures that predict the onset of AKI.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Antibacterianos/toxicidad , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Vancomicina/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA