Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33688048

RESUMEN

Phosphite is the most energetically favorable chemotrophic electron donor known, with a half-cell potential (Eo') of -650 mV for the PO43-/PO33- couple. Since the discovery of microbial dissimilatory phosphite oxidation (DPO) in 2000, the environmental distribution, evolution, and diversity of DPO microorganisms (DPOMs) have remained enigmatic, as only two species have been identified. Here, metagenomic sequencing of phosphite-enriched microbial communities enabled the genome reconstruction and metabolic characterization of 21 additional DPOMs. These DPOMs spanned six classes of bacteria, including the Negativicutes, Desulfotomaculia, Synergistia, Syntrophia, Desulfobacteria, and Desulfomonilia_A Comparing the DPO genes from the genomes of enriched organisms with over 17,000 publicly available metagenomes revealed the global existence of this metabolism in diverse anoxic environments, including wastewaters, sediments, and subsurface aquifers. Despite their newfound environmental and taxonomic diversity, metagenomic analyses suggested that the typical DPOM is a chemolithoautotroph that occupies low-oxygen environments and specializes in phosphite oxidation coupled to CO2 reduction. Phylogenetic analyses indicated that the DPO genes form a highly conserved cluster that likely has ancient origins predating the split of monoderm and diderm bacteria. By coupling microbial cultivation strategies with metagenomics, these studies highlighted the unsampled metabolic versatility latent in microbial communities. We have uncovered the unexpected prevalence, diversity, biochemical specialization, and ancient origins of a unique metabolism central to the redox cycling of phosphorus, a primary nutrient on Earth.


Asunto(s)
Bacterias/metabolismo , Biodiversidad , Evolución Molecular , Fosfitos/metabolismo , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Crecimiento Quimioautotrófico , Metabolismo Energético , Variación Genética , Genoma Bacteriano/genética , Microbiota , Oxidación-Reducción , Filogenia , Aguas Residuales/microbiología
2.
Annu Rev Microbiol ; 70: 435-57, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27482739

RESUMEN

Respiration of perchlorate and chlorate [collectively, (per)chlorate] was only recognized in the last 20 years, yet substantial advances have been made in our understanding of the underlying metabolisms. Although it was once considered solely anthropogenic, pervasive natural sources, both terrestrial and extraterrestrial, indicate an ancient (per)chlorate presence across our solar system. These discoveries stimulated interest in (per)chlorate microbiology, and the application of advanced approaches highlights exciting new facets. Forward and reverse genetics revealed new information regarding underlying molecular biology and associated regulatory mechanisms. Structural and functional analysis characterized core enzymes and identified novel reaction sequences. Comparative genomics elucidated evolutionary aspects, and stress analysis identified novel response mechanisms to reactive chlorine species. Finally, systems biology identified unique metabolic versatility and novel mechanisms of (per)chlorate respiration, including symbiosis and a hybrid enzymatic-abiotic metabolism. While many published studies focus on (per)chlorate and their basic metabolism, this review highlights seminal advances made over the last decade and identifies new directions and potential novel applications.


Asunto(s)
Bacterias/metabolismo , Cloratos/metabolismo , Percloratos/metabolismo , Bacterias/genética , Cloratos/química , Planeta Tierra , Oxidación-Reducción , Percloratos/química
3.
Proc Natl Acad Sci U S A ; 115(1): E92-E101, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29183985

RESUMEN

Dissimilatory phosphite oxidation (DPO), a microbial metabolism by which phosphite (HPO32-) is oxidized to phosphate (PO43-), is the most energetically favorable chemotrophic electron-donating process known. Only one DPO organism has been described to date, and little is known about the environmental relevance of this metabolism. In this study, we used 16S rRNA gene community analysis and genome-resolved metagenomics to characterize anaerobic wastewater treatment sludge enrichments performing DPO coupled to CO2 reduction. We identified an uncultivated DPO bacterium, Candidatus Phosphitivorax (Ca. P.) anaerolimi strain Phox-21, that belongs to candidate order GW-28 within the Deltaproteobacteria, which has no known cultured isolates. Genes for phosphite oxidation and for CO2 reduction to formate were found in the genome of Ca. P. anaerolimi, but it appears to lack any of the known natural carbon fixation pathways. These observations led us to propose a metabolic model for autotrophic growth by Ca. P. anaerolimi whereby DPO drives CO2 reduction to formate, which is then assimilated into biomass via the reductive glycine pathway.


Asunto(s)
Dióxido de Carbono/metabolismo , Crecimiento Quimioautotrófico/fisiología , Deltaproteobacteria , Metagenómica , Fosfitos/metabolismo , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología , Microbiología del Agua , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Oxidación-Reducción , Purificación del Agua
4.
Environ Sci Technol ; 54(24): 16119-16127, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33253556

RESUMEN

Sulfide accumulation in oil reservoir fluids (souring) from the activity of sulfate-reducing microorganisms (SRM) is of grave concern because of the associated health and facility failure risks. Here, we present an assessment of tungstate as a selective and potent inhibitor of SRM. Dose-response inhibitor experiments were conducted with a number of SRM isolates and enrichments at 30-80 °C and an increase in the effectiveness of tungstate treatment at higher temperatures was observed. To explore mixed inhibitor treatment modes, we tested synergy or antagonism between several inhibitors with tungstate, and found synergism between WO42- and NO2-, while additive effects were observed with ClO4- and NO3-. We also evaluated SRM inhibition by tungstate in advective upflow oil-sand-packed columns. Although 2 mM tungstate was initially sufficient to inhibit sulfidogenesis, subsequent temporal CaWO4 precipitation resulted in loss of the bioavailable inhibitor from solution and a concurrent increase in effluent sulfide. Mixing 4 mM sodium carbonate with the 2 mM tungstate was enough to promote tungstate solubility to reach inhibitory concentrations, without precipitation, and completely inhibit SRM activity. Overall, we demonstrate the effectiveness of tungstate as a potent SRM inhibitor, particularly at higher temperatures, and propose a novel carbonate-tungstate formulation for application to soured oil reservoirs.


Asunto(s)
Sulfatos , Compuestos de Tungsteno , Yacimiento de Petróleo y Gas , Sulfuros
5.
Environ Microbiol ; 21(4): 1395-1406, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30807684

RESUMEN

Hydrogen sulfide produced by sulfate-reducing microorganisms (SRM) poses significant health and economic risks, particularly during oil recovery. Previous studies identified perchlorate as a specific inhibitor of SRM. However, constant inhibitor addition to natural systems results in new selective pressures. Consequently, we investigated the ability of Desulfovibrio alaskensis G20 to evolve perchlorate resistance. Serial transfers in increasing concentrations of perchlorate led to robust growth in the presence of 100 mM inhibitor. Isolated adapted strains demonstrated a threefold increase in perchlorate resistance compared to the wild-type ancestor. Whole genome sequencing revealed a single base substitution in Dde_2265, the sulfate adenylyltransferase (sat). We purified and biochemically characterized the Sat from both wild-type and adapted strains, and showed that the adapted Sat was approximately threefold more resistant to perchlorate inhibition, mirroring whole cell results. The ability of this mutation to confer resistance across other inhibitors of sulfidogenesis was also assayed. The generalizability of this mutation was confirmed in multiple evolving G20 cultures and in another SRM, D. vulgaris Hildenborough. This work demonstrates that a single nucleotide polymorphism in Sat can have a significant impact on developing perchlorate resistance and emphasizes the value of adaptive laboratory evolution for understanding microbial responses to environmental perturbations.


Asunto(s)
Adaptación Fisiológica , Desulfovibrio/efectos de los fármacos , Desulfovibrio/fisiología , Percloratos/farmacología , Sulfatos/metabolismo , Desulfovibrio/enzimología , Desulfovibrio vulgaris/genética , Farmacorresistencia Bacteriana/genética , Sulfuro de Hidrógeno , Mutación , Oxidación-Reducción , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
6.
Microbiology (Reading) ; 165(3): 254-269, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30556806

RESUMEN

Microbial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis - and potentially assimilatory sulfate pathways - relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.


Asunto(s)
Adenosina Fosfosulfato/análogos & derivados , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfatos/química , Sulfatos/metabolismo , Adaptación Fisiológica/genética , Aniones/química , Aniones/metabolismo , Transporte Biológico , Sulfuro de Hidrógeno/metabolismo , Oxidación-Reducción , Sulfato Adenililtransferasa/genética , Sulfato Adenililtransferasa/metabolismo , Bacterias Reductoras del Azufre/genética , Bacterias Reductoras del Azufre/crecimiento & desarrollo , Bacterias Reductoras del Azufre/metabolismo
7.
Environ Sci Technol ; 52(3): 1290-1300, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29320174

RESUMEN

Biosouring in crude oil reservoirs by sulfate-reducing microbial communities (SRCs) results in hydrogen sulfide production, precipitation of metal sulfide complexes, increased industrial costs of petroleum production, and exposure issues for personnel. Potential treatment strategies include nitrate or perchlorate injections into reservoirs. Gas chromatography with vacuum ultraviolet ionization and high-resolution time-of-flight mass spectrometry (GC-VUV-HTOF) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with electrospray ionization were applied in this study to identify hydrocarbon degradation patterns and product formations in crude oil samples from biosoured, nitrate-treated, and perchlorate-treated bioreactor column experiments. Crude oil hydrocarbons were selectively transformed based on molecular weight and compound class in the biosouring control environment. Both the nitrate and the perchlorate treatments significantly reduced sulfide production; however, the nitrate treatment enhanced crude oil biotransformation, while the perchlorate treatment inhibited crude oil biotransformation. Nitrogen- and oxygen-containing biodegradation products, particularly with chemical formulas consistent with monocarboxylic and dicarboxylic acids containing 10-60 carbon atoms, were observed in the oil samples from both the souring control and the nitrate-treated columns but were not observed in the oil samples from the perchlorate-treated column. These results demonstrate that hydrocarbon degradation and product formation of crude oil can span hydrocarbon isomers and molecular weights up to C60 and double-bond equivalent classes ranging from straight-chain alkanes to polycyclic aromatic hydrocarbons. Our results also strongly suggest that perchlorate injections may provide a preferred strategy to treat biosouring through inhibition of biotransformation.


Asunto(s)
Petróleo , Biodegradación Ambiental , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos , Yacimiento de Petróleo y Gas
8.
J Biol Chem ; 291(17): 9190-202, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26940877

RESUMEN

Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 µm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth.


Asunto(s)
Proteínas Bacterianas/química , ADN Helicasas/química , Oxidorreductasas/química , Percloratos/química , Rhodocyclaceae/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , ADN Helicasas/genética , ADN Helicasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Percloratos/metabolismo , Rhodocyclaceae/genética
9.
Environ Sci Technol ; 51(12): 7278-7285, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28492331

RESUMEN

The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive, and corrosive. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to identify potent and selective inhibitors of SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Zinc pyrithione is the most potent inhibitor of sulfidogenesis that we identified, and is several orders of magnitude more potent than commonly used industrial biocides. Both zinc and copper pyrithione are also moderately selective against SRM. The high-throughput (HT) approach we present can be readily adapted to target SRM in diverse environments and similar strategies could be used to quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant to efforts to engineer environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Sulfuro de Hidrógeno , Bacterias Reductoras del Azufre/genética , Ecosistema , Monitoreo del Ambiente , Yacimiento de Petróleo y Gas , Oxidación-Reducción , Sulfatos
10.
Environ Microbiol ; 18(10): 3342-3354, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26411776

RESUMEN

Genes important for growth of Pseudomonas stutzeri PDA on chlorate were identified using a randomly DNA bar-coded transposon mutant library. During chlorate reduction, mutations in genes encoding the chlorate reductase clrABC, predicted molybdopterin cofactor chaperon clrD, molybdopterin biosynthesis and two genes of unknown function (clrE, clrF) had fitness defects in pooled mutant assays (Bar-seq). Markerless in-frame deletions confirmed that clrA, clrB and clrC were essential for chlorate reduction, while clrD, clrE and clrF had less severe growth defects. Interestingly, the key detoxification gene cld was essential for chlorate reduction in isogenic pure culture experiments, but showed only minor fitness defects in Bar-seq experiments. We hypothesized this was enabled through chlorite dismutation by the community, as most strains in the Bar-seq library contained an intact cld. In support of this, Δcld grew with wild-type PDA or ΔclrA, and purified Cld also restored growth to the Δcld mutant. Expanding on this, wild-type PDA and a Δcld mutant of the perchlorate reducer Azospira suillum PS grew on perchlorate in co-culture, but not individually. These results demonstrate that co-occurrence of cld and a chloroxyanion reductase within a single organism is not necessary and raises the possibility of syntrophic (per)chlorate respiration in the environment.


Asunto(s)
Cloratos/metabolismo , Oxidorreductasas/genética , Percloratos/metabolismo , Pseudomonas stutzeri/crecimiento & desarrollo , Pseudomonas stutzeri/metabolismo , Coenzimas/biosíntesis , Elementos Transponibles de ADN , Metaloproteínas/biosíntesis , Cofactores de Molibdeno , Oxidación-Reducción , Pseudomonas stutzeri/genética , Pteridinas , Rhodocyclaceae/crecimiento & desarrollo , Rhodocyclaceae/metabolismo
11.
Environ Sci Technol ; 50(13): 7010-8, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27267666

RESUMEN

Microbial souring in oil reservoirs produces toxic, corrosive hydrogen sulfide through microbial sulfate reduction, often accompanying (sea)water flooding during secondary oil recovery. With data from column experiments as constraints, we developed the first reactive-transport model of a new candidate inhibitor, perchlorate, and compared it with the commonly used inhibitor, nitrate. Our model provided a good fit to the data, which suggest that perchlorate is more effective than nitrate on a per mole of inhibitor basis. Critically, we used our model to gain insight into the underlying competing mechanisms controlling the action of each inhibitor. This analysis suggested that competition by heterotrophic perchlorate reducers and direct inhibition by nitrite produced from heterotrophic nitrate reduction were the most important mechanisms for the perchlorate and nitrate treatments, respectively, in the modeled column experiments. This work demonstrates modeling to be a powerful tool for increasing and testing our understanding of reservoir-souring generation, prevention, and remediation processes, allowing us to incorporate insights derived from laboratory experiments into a framework that can potentially be used to assess risk and design optimal treatment schemes.


Asunto(s)
Percloratos , Azufre , Nitratos/farmacología , Nitritos , Bacterias Reductoras del Azufre/efectos de los fármacos
12.
Appl Microbiol Biotechnol ; 100(22): 9719-9732, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27596621

RESUMEN

The recent recognition of the environmental prevalence of perchlorate and its discovery on Mars, Earth's moon, and in meteorites, in addition to its novel application to controlling oil reservoir sulfidogenesis, has resulted in a renewed interest in this exotic ion and its associated microbiology. However, while plentiful data exists on freshwater perchlorate respiring organisms, information on their halophilic counterparts and microbial communities is scarce. Here, we investigated the temporal evolving structure of perchlorate respiring communities under a range of NaCl concentrations (1, 3, 5, 7, and 10 % wt/vol) using marine sediment amended with acetate and perchlorate. In general, perchlorate consumption rates were inversely proportional to NaCl concentration with the most rapid rate observed at 1 % NaCl. At 10 % NaCl, no perchlorate removal was observed. Transcriptional analysis of the 16S rRNA gene indicated that salinity impacted microbial community structure and the most active members were in families Rhodocyclaceae (1 and 3 % NaCl), Pseudomonadaceae (1 NaCl), Campylobacteraceae (1, 5, and 7 % NaCl), Sedimenticolaceae (3 % NaCl), Desulfuromonadaceae (5 and 7 % NaCl), Pelobacteraceae (5 % NaCl), Helicobacteraceae (5 and 7 % NaCl), and V1B07b93 (7 %). Novel isolates of genera Sedimenticola, Marinobacter, Denitromonas, Azoarcus, and Pseudomonas were obtained and their perchlorate respiring capacity confirmed. Although the obligate anaerobic, sulfur-reducing Desulfuromonadaceae species were dominant at 5 and 7 % NaCl, their enrichment may result from biological sulfur cycling, ensuing from the innate ability of DPRB to oxidize sulfide. Additionally, our results demonstrated enrichment of an archaeon of phylum Parvarchaeota at 5 % NaCl. To date, this phylum has only been described in metagenomic experiments of acid mine drainage and is unexpected in a marine community. These studies identify the intrinsic capacity of marine systems to respire perchlorate and significantly expand the known diversity of organisms capable of this novel metabolism.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Archaea/efectos de los fármacos , Bacterias/efectos de los fármacos , Biota/efectos de los fármacos , Sedimentos Geológicos/microbiología , Percloratos/metabolismo , Salinidad , Anaerobiosis , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo
13.
BMC Genomics ; 16: 862, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26502901

RESUMEN

BACKGROUND: Perchlorate is a widely distributed anion that is toxic to humans, but serves as a valuable electron acceptor for several lineages of bacteria. The ability to utilize perchlorate is conferred by a horizontally transferred piece of DNA called the perchlorate reduction genomic island (PRI). METHODS: We compared genomes of perchlorate reducers using phylogenomics, SNP mapping, and differences in genomic architecture to interrogate the evolutionary history of perchlorate respiration. RESULTS: Here we report on the PRI of 13 genomes of perchlorate-reducing bacteria from four different classes of Phylum Proteobacteria (the Alpha-, Beta-, Gamma- and Epsilonproteobacteria). Among the different phylogenetic classes, the island varies considerably in genetic content as well as in its putative mechanism and location of integration. However, the islands of the densely sampled genera Azospira and Magnetospirillum have striking nucleotide identity despite divergent genomes, implying horizontal transfer and positive selection within narrow phylogenetic taxa. We also assess the phylogenetic origin of accessory genes in the various incarnations of the island, which can be traced to chromosomal paralogs from phylogenetically similar organisms. CONCLUSION: These observations suggest a complex phylogenetic history where the island is rarely transferred at the class level but undergoes frequent and continuous transfer within narrow phylogenetic groups. This restricted transfer is seen directly by the independent integration of near-identical islands within a genus and indirectly due to the acquisition of lineage-specific accessory genes. The genomic reversibility of perchlorate reduction may present a unique equilibrium for a metabolism that confers a competitive advantage only in the presence of an electron acceptor, which although widely distributed, is generally present at low concentrations in nature.


Asunto(s)
Evolución Biológica , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Islas Genómicas/genética , Percloratos/metabolismo
14.
Mol Microbiol ; 94(1): 107-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25099177

RESUMEN

Previous work on respiratory chlorate reduction has biochemically identified the terminal reductase ClrABC and the chlorite detoxifying enzyme Cld. In Shewanella algae ACDC, genes encoding these enzymes reside on composite transposons whose core we refer to as the chlorate reduction composite transposon interior (CRI). To better understand this metabolism in ACDC, we used RNA-seq and proteomics to predict carbon and electron flow during chlorate reduction and posit that formate is an important electron carrier with lactate as the electron donor, but that NADH predominates on acetate. Chlorate-specific transcription of electron transport chain components or the CRI was not observed, but clr and cld transcription was attenuated by oxygen. The major chlorate-specific response related to oxidative stress and was indicative of reactive chlorine species production. A genetic system based on rpsL-streptomycin counter selection was developed to further dissect the metabolism, but ACDC readily lost the CRI via homologous recombination of the composite transposon's flanking insertion sequences. An engineered strain containing a single chromosomal CRI did not grow on chlorate, but overexpression of cld and its neighbouring cytochrome c restored growth. We postulate that the recently acquired CRI underwent copy-number expansion to circumvent insufficient expression of key genes in the pathway.


Asunto(s)
Cloratos/metabolismo , Eliminación de Gen , Estrés Oxidativo , Shewanella/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Shewanella/enzimología , Shewanella/genética
15.
Appl Environ Microbiol ; 81(8): 2717-26, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25662971

RESUMEN

Two (per)chlorate-reducing bacteria, strains CUZ and NSS, were isolated from marine sediments in Berkeley and San Diego, CA, respectively. Strain CUZ respired both perchlorate and chlorate [collectively designated (per)chlorate], while strain NSS respired only chlorate. Phylogenetic analysis classified both strains as close relatives of the gammaproteobacterium Sedimenticola selenatireducens. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations showed the presence of rod-shaped, motile cells containing one polar flagellum. Optimum growth for strain CUZ was observed at 25 to 30 °C, pH 7, and 4% NaCl, while strain NSS grew optimally at 37 to 42 °C, pH 7.5 to 8, and 1.5 to 2.5% NaCl. Both strains oxidized hydrogen, sulfide, various organic acids, and aromatics, such as benzoate and phenylacetate, as electron donors coupled to oxygen, nitrate, and (per)chlorate or chlorate as electron acceptors. The draft genome of strain CUZ carried the requisite (per)chlorate reduction island (PRI) for (per)chlorate respiration, while that of strain NSS carried the composite chlorate reduction transposon responsible for chlorate metabolism. The PRI of strain CUZ encoded a perchlorate reductase (Pcr), which reduced both perchlorate and chlorate, while the genome of strain NSS included a gene for a distinct chlorate reductase (Clr) that reduced only chlorate. When both (per)chlorate and nitrate were present, (per)chlorate was preferentially utilized if the inoculum was pregrown on (per)chlorate. Historically, (per)chlorate-reducing bacteria (PRB) and chlorate-reducing bacteria (CRB) have been isolated primarily from freshwater, mesophilic environments. This study describes the isolation and characterization of two highly related marine halophiles, one a PRB and the other a CRB, and thus broadens the known phylogenetic and physiological diversity of these unusual metabolisms.


Asunto(s)
Cloratos/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Percloratos/metabolismo , Contaminantes Químicos del Agua/metabolismo , California , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Gammaproteobacteria/ultraestructura , Genotipo , Sedimentos Geológicos/microbiología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie
16.
Environ Sci Technol ; 49(6): 3727-36, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25698072

RESUMEN

Despite the environmental and economic cost of microbial sulfidogenesis in industrial operations, few compounds are known as selective inhibitors of respiratory sulfate reducing microorganisms (SRM), and no study has systematically and quantitatively evaluated the selectivity and potency of SRM inhibitors. Using general, high-throughput assays to quantitatively evaluate inhibitor potency and selectivity in a model sulfate-reducing microbial ecosystem as well as inhibitor specificity for the sulfate reduction pathway in a model SRM, we screened a panel of inorganic oxyanions. We identified several SRM selective inhibitors including selenate, selenite, tellurate, tellurite, nitrate, nitrite, perchlorate, chlorate, monofluorophosphate, vanadate, molydate, and tungstate. Monofluorophosphate (MFP) was not known previously as a selective SRM inhibitor, but has promising characteristics including low toxicity to eukaryotic organisms, high stability at circumneutral pH, utility as an abiotic corrosion inhibitor, and low cost. MFP remains a potent inhibitor of SRM growing by fermentation, and MFP is tolerated by nitrate and perchlorate reducing microorganisms. For SRM inhibition, MFP is synergistic with nitrite and chlorite, and could enhance the efficacy of nitrate or perchlorate treatments. Finally, MFP inhibition is multifaceted. Both inhibition of the central sulfate reduction pathway and release of cytoplasmic fluoride ion are implicated in the mechanism of MFP toxicity.


Asunto(s)
Bacterias/metabolismo , Fluoruros/farmacología , Fosfatos/farmacología , Sulfatos/metabolismo , Aerobiosis/efectos de los fármacos , Aniones , Bacterias/efectos de los fármacos , Cloruros/farmacología , Desulfovibrio/efectos de los fármacos , Desulfovibrio/crecimiento & desarrollo , Desulfovibrio/metabolismo , Fermentación/efectos de los fármacos , Fluoruros/toxicidad , Iones , Mutación/genética , Nitritos/farmacología , Oxidación-Reducción , Oxígeno/análisis , Filogenia , Sulfuros/metabolismo
17.
Proc Natl Acad Sci U S A ; 109(5): 1702-7, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22307634

RESUMEN

Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they may be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or anthraquinone-2,6-disulfonate (AQDS), an analog of the redox active components of humic substances. The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin-shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS, and that several MHCs are localized to the cell wall or cell surface. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants, suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results provide unique direct evidence for cell wall-associated cytochromes and support MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.


Asunto(s)
Citocromos c/metabolismo , Bacterias Grampositivas/metabolismo , Hemo/metabolismo , Metales/metabolismo , Peptococcaceae/enzimología , Cromatografía Liquida , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Peptococcaceae/ultraestructura , Espectrometría de Masas en Tándem
19.
J Bacteriol ; 195(14): 3260-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23687275

RESUMEN

Phylogenetically diverse species of bacteria can catalyze the oxidation of ferrous iron [Fe(II)] coupled to nitrate (NO(3)(-)) reduction, often referred to as nitrate-dependent iron oxidation (NDFO). Very little is known about the biochemistry of NDFO, and though growth benefits have been observed, mineral encrustations and nitrite accumulation likely limit growth. Acidovorax ebreus, like other species in the Acidovorax genus, is proficient at catalyzing NDFO. Our results suggest that the induction of specific Fe(II) oxidoreductase proteins is not required for NDFO. No upregulated periplasmic or outer membrane redox-active proteins, like those involved in Fe(II) oxidation by acidophilic iron oxidizers or anaerobic photoferrotrophs, were observed in proteomic experiments. We demonstrate that while "abiotic" extracellular reactions between Fe(II) and biogenic NO(2)(-)/NO can be involved in NDFO, intracellular reactions between Fe(II) and periplasmic components are essential to initiate extensive NDFO. We present evidence that an organic cosubstrate inhibits NDFO, likely by keeping periplasmic enzymes in their reduced state, stimulating metal efflux pumping, or both, and that growth during NDFO relies on the capacity of a nitrate-reducing bacterium to overcome the toxicity of Fe(II) and reactive nitrogen species. On the basis of our data and evidence in the literature, we postulate that all respiratory nitrate-reducing bacteria are innately capable of catalyzing NDFO. Our findings have implications for a mechanistic understanding of NDFO, the biogeochemical controls on anaerobic Fe(II) oxidation, and the production of NO(2)(-), NO, and N(2)O in the environment.


Asunto(s)
Comamonadaceae/metabolismo , Compuestos Ferrosos/metabolismo , Nitratos/metabolismo , Proteínas Bacterianas/análisis , Comamonadaceae/química , Comamonadaceae/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas , Oxidación-Reducción , Proteoma/análisis , Especies de Nitrógeno Reactivo/metabolismo
20.
Proteomics ; 13(18-19): 2761-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23616463

RESUMEN

Trypsin shaving is a targeted proteomic method for identifying cell-surface exposed proteins on bacterial cells. For the identification of redox-active cell-surface proteins, trypsin-shaving datasets can be matched with surface-enhanced Raman spectra of intact cells to identify the cofactors associated with the cell-surface proteins. Together, these approaches could help resolve questions about the presence of cell-surface electron transport components in environmental microorganisms, especially microbes that oxidize and reduce metals and metalloids as electron donors and acceptors.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Microbiología Ambiental , Proteínas de la Membrana/metabolismo , Espectrometría Raman , Oxidación-Reducción , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA