RESUMEN
The catalytic domains of protein kinases are commonly treated as independent modular units with distinct biological functions. Here, the interactions between the catalytic and juxtamembrane domains of VEGFR2 are studied. Highly purified preparations of the receptor tyrosine kinase VEGFR2 catalytic domain without (VEGFR2-CD) and with (VEGFR2-CD/JM) the juxtamembrane (JM) domain were characterized by kinetic, biophysical, and structural methods. Although the catalytic parameters for both constructs were similar, the autophosphorylation rate of VEGFR2-CD/JM was substantially faster than VEGFR2-CD. The first event in the autophosphorylation reaction was phosphorylation of JM residue Y801 followed by phosphorylation of activation loop residues in the CD. The rates of activation loop autophosphorylation for the two constructs were determined to be similar. The autophosphorylation rate of Y801 was invariant on enzyme concentration, which is consistent with an intramolecular reaction. In addition, the first biochemical characterization of the advanced clinical compound axitinib is reported. Axitinib was found to have 40-fold enhanced biochemical potency toward VEGFR2-CD/JM (K(i) = 28 pM) compared to VEGFR2-CD, which correlates better with cellular potency. Calorimetric studies, including a novel ITC compound displacement method, confirmed the potency and provided insight into the thermodynamic origin of the potency differences. A structural model for the VEGFR2-CD/JM is proposed based on the experimental findings reported here and on the JM position in c-Kit, FLT3, and CSF1/cFMS. The described studies identify potential functions of the VEGFR2 JM domain with implications to both receptor biology and inhibitor design.
Asunto(s)
Imidazoles/farmacología , Indazoles/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Axitinib , Calorimetría/métodos , Dominio Catalítico , Línea Celular , Cromatografía Liquida , Gastrinas/farmacología , Humanos , Cinética , Fosforilación , Resonancia por Plasmón de Superficie , Espectrometría de Masas en Tándem , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/químicaRESUMEN
The antiglaucoma drugs dorzolamide (1) and brinzolamide (2) lower intraocular pressure (IOP) by inhibiting the carbonic anhydrase (CA) enzyme to reduce aqueous humor production. The introduction of a nitric oxide (NO) donor into the alkyl side chain of dorzolamide (1) and brinzolamide (2) has led to the discovery of NO-dorzolamide 3a and NO-brinzolamide 4a, which could lower IOP through two mechanisms: CA inhibition to decrease aqueous humor secretion (reduce inflow) and NO release to increase aqueous humor drainage (increase outflow). Compounds 3a and 4a have shown improved efficacy of lowering IOP in both rabbits and monkeys compared to brinzolamide (2).