Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37764225

RESUMEN

Boswellia serrata Roxb. extract (BSE), rich in boswellic acids, is well known as a potent anti-inflammatory natural drug. However, due to its limited aqueous solubility, BSE inclusion into an appropriate carrier, capable of improving its release in the biological target, would be highly desirable. Starting with this requirement, new hybrid composites based on the inclusion of BSE in a lamellar solid layered double hydroxide (LDH), i.e., magnesium aluminum carbonate, were developed and characterized in the present work. The adopted LDH exhibited a layered crystal structure, comprising positively charged hydroxide layers and interlayers composed of carbonate anions and water molecules; thus, it was expected to embed negatively charged boswellic acids. In the present case, a calcination process was also adopted on the LDH to increase organic acid loading, based on the replacement of the original inorganic anions. An accurate investigation was carried out by TGA, PXRD, FT-IR/ATR, XPS, SEM, and LC-MS to ascertain the nature, interaction, and quantification of the active molecules of the vegetal extract loaded in the developed hybrid materials. As a result, the significant disruption of the original layered structure was observed in the LDH subjected to calcination (LDHc), and this material was able to include a higher amount of organic acids when its composite with BSE was prepared. However, in vitro tests on the composites' bioactivity, expressed in terms of antimicrobial and anti-inflammatory activity, evidenced LDH-BSE as a better material compared to BSE and to LDHc-BSE, thus suggesting that, although the embedded organic acid amount was lower, they could be more available since they were not firmly bound to the clay. The composite was able to significantly decrease the number of viable pathogens such as Escherichia coli and Staphylococcus aureus, as well as the internalization of toxic active species into human cells imposing oxidative stress, in comparison to the BSE.

2.
J Nanosci Nanotechnol ; 19(6): 3637-3642, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30744798

RESUMEN

Herein, we report the synthesis, characterization and picric acid chemical sensing application of samarium (Sm) doped ZnO nanorods. The Sm-doped ZnO nanorods were synthesized by facile hydrothermal process and characterized using various analytical methods which confirmed the large-scale synthesis and wurtzite hexagonal crystal structure for the synthesized nanorods. The doping of Sm ions in the lattices of the synthesized nanorods was evaluated by the energy dispersive X-ray spectroscopy (EDS). The synthesized Sm-doped ZnO nanorods were used as potential scaffold to fabricate high sensitive and reproducible picric acid chemical sensor based on I-V technique. The fabricated picric acid chemical sensor based on Sm-doped ZnO nanorods exhibited a high sensitivity of 213.9 mA mM-1 cm-2 with the limit of detection of ∼0.228 mM and correlation coefficient of R═0.9889. The obtained results revealed that the facile grown Sm-doped ZnO nanorods can efficiently be used to fabricate high sensitive and reproducible chemical sensors.

3.
Cells Tissues Organs ; 203(4): 215-230, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27883993

RESUMEN

The physiological effects of acetylcholine on keratinocytes depend on the presence of nicotinic and muscarinic receptors. The role of nonneuronal acetylcholine in keratinocytes could have important clinical implications for patients with various skin disorders such as nonhealing wounds. In order to evaluate the efficacy of highly diluted acetylcholine solutions obtained by sequential kinetic activation, we aimed to investigate the effects of these solutions on normal human keratinocytes. Two different concentrations (10 fg/mL and 1 pg/mL) and formulations (kinetically activated and nonkinetically activated) of acetylcholine were used to verify keratinocyte viability, proliferation, and migration and the intracellular pathways involved using MTT, crystal violet, wound healing, and Western blot compared to 147 ng/mL acetylcholine. The activated formulations (1 pg/mL and 10 fg/mL) revealed a significant capacity to increase migration, cell viability, and cell proliferation compared to 147 ng/mL acetylcholine, and these effects were more evident after a single administration. Sequential kinetic activation resulted in a statistically significant decrease in reactive oxygen species production accompanied by an increase in mitochondrial membrane potential and a decrease in oxygen consumption compared to 147 ng/mL acetylcholine. The M1 muscarinic receptor was involved in these effects. Finally, the involvement of ERK/mitogen-activated protein kinases (MAPK) and KI67 confirmed the effectiveness of the single treatment on cell proliferation. The intracellular pathways of calcium were investigated as well. Our results indicate for the first time that highly diluted and kinetically activated acetylcholine seems to play an active role in an in vitro model of wound healing. Moreover, the administration of acetylcholine within the physiological range may not only be effective but is also likely to be safe.


Asunto(s)
Acetilcolina/farmacología , Queratinocitos/metabolismo , Sistema Colinérgico no Neuronal/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptores Muscarínicos/metabolismo , Transducción de Señal/efectos de los fármacos , Soluciones
4.
Eur J Oral Sci ; 125(2): 151-159, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28247537

RESUMEN

A novel potassium oxalate-based hydrogel is proposed for treating dentin hypersensitivity and this study evaluates its in vitro performance as a remineralizing, desensitizing agent. Etched disks of human dentin were treated for 10 or 20 min using the test hydrogel, to mimic a professional application with dental mouth guards. Dentin disks were evaluated in terms of permeability indexes in a fluid-filled system, the surface morphology was assessed by scanning electron microscopy, and the structural properties were studied using X-ray diffraction analysis. The potassium oxalate hydrogel significantly reduced dentin permeability, in a time-dependent manner, and occluded most of the patent dentinal tubules via crystal precipitation, forming a remineralized layer. After hydrogel treatments, an acid solution (pH 4.2) was applied to the disks for 30 s, or 1, 2, or 5 min, in order to reproduce a plaque-like oral acidity, and further analysis showed a good resistance of the remineralized layer to the acid challenge. The potassium oxalate-based hydrogel showed a better performance over commercially available products and artificial saliva, appearing a promising candidate for the treatment of dentin hypersensitivity.


Asunto(s)
Desensibilizantes Dentinarios/farmacología , Sensibilidad de la Dentina/tratamiento farmacológico , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Ácido Oxálico/farmacología , Desensibilizantes Dentinarios/síntesis química , Permeabilidad de la Dentina/efectos de los fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/síntesis química , Técnicas In Vitro , Microscopía Electrónica de Rastreo , Saliva Artificial/farmacología , Difracción de Rayos X
5.
Phytother Res ; 31(10): 1529-1538, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28752532

RESUMEN

Several studies have documented the ability of flavonoids to sensitize cancer cells to chemotherapeutics and reverse multidrug resistance by inhibition of efflux pumps (adenosine triphosphate-binding cassette transporters), apoptosis activation, and cell cycle arrest. In this study, the flavonoid rutin (quercetin 3-O-ß-d-rutinoside) was investigated as chemosensitizer towards two different human epithelial breast cancer cell lines: (i) MB-MDA-231, selected as representative for triple-negative breast cancer and (ii) MCF-7 used as a well-characterized model of HER2-negative breast cancer. To assess the cytocompatibility of rutin against non-cancer cells, primary human mammary fibroblasts were used as control and non-target cells. In MDA-MB-231 cells, 20 µM rutin enhanced cytotoxicity related to cyclophosphamide and methotrexate. Rutin significantly (p < 0.05) increased the anticancer activity of both chemotherapeutics, at 24-48-72 h, and decreased the activity of the adenosine triphosphate-binding cassette transporters, namely, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). Flow cytometry analysis showed 20 µM and 50 µM rutin arrested cell cycle at G2/M and G0/G1 phases, respectively, significantly promoting cell apoptosis. Rutin, via non-selective inhibition of P-gp and BCRP pumps, efficiently reverses multidrug resistance and restores chemosensitivity to cyclophosphamide and cyclophosphamide of human chemoresistant, triple-negative breast cancer cells, successfully arresting cell cycle progression. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Quercetina/farmacología , Rutina/farmacología , Neoplasias de la Mama Triple Negativas/patología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Femenino , Flavonoides/farmacología , Glucósidos/farmacología , Glicósidos/farmacología , Humanos , Proteínas de Neoplasias/metabolismo , Quercetina/análogos & derivados , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
6.
J Mater Sci Mater Med ; 27(5): 95, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26984360

RESUMEN

Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.


Asunto(s)
Proliferación Celular/fisiología , Fibroblastos/fisiología , Hidrogeles/química , Metilcelulosa/química , Animales , Materiales Biocompatibles , Técnicas de Cultivo de Célula , Ratones , Células 3T3 NIH , Reología , Temperatura
7.
Molecules ; 20(5): 9344-57, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26007187

RESUMEN

Chlorhexidine (CHX), one of the most effective drugs administered for periodontal treatment, presents collateral effects including toxicity when used for prolonged periods; here, we have evaluated the bactericidal potency and the cytocompatibility of Juniperus excelsa M. Bieb essential oil (EO) in comparison with 0.05% CHX. The EO was extracted from berries by hydrodistillation and components identified by gas chromatography and mass spectrometry. Bacterial inhibition halo analysis, quantitative cell viability 2,3-bis(2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenyl amino) carbonyl]-2H-tetrazolium hydroxide assay (XTT), and colony forming unit (CFU) count were evaluated against the two biofilm formers Aggregatibacter actinomycetemcomitans and Streptococcus mutans. Finally, cytocompatibility was assessed with human primary gingival fibroblasts (HGF) and mucosal keratinocytes (HK). The resulting EO was mainly composed of monoterpene hydrocarbons and oxygenated monoterpenes. An inhibition halo test demonstrated that both bacteria were sensitive to the EO; XTT analysis and CFU counts confirmed that 10-fold-diluted EO determined a statistically significant (p < 0.05) reduction in bacteria count and viability towards both biofilm and planktonic forms in a comparable manner to those obtained with CHX. Moreover, EO displayed higher cytocompatibility than CHX (p < 0.05). In conclusion, EO exhibited bactericidal activity similar to CHX, but a superior cytocompatibility, making it a promising antiseptic alternative to CHX.


Asunto(s)
Aggregatibacter actinomycetemcomitans/efectos de los fármacos , Aceites Volátiles/farmacología , Enfermedades Periodontales/tratamiento farmacológico , Aceites de Plantas/farmacología , Streptococcus mutans/efectos de los fármacos , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Clorhexidina/efectos adversos , Clorhexidina/farmacología , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Farmacorresistencia Bacteriana , Fibroblastos/efectos de los fármacos , Encía/citología , Encía/efectos de los fármacos , Juniperus/metabolismo , Queratinocitos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Monoterpenos/efectos adversos , Monoterpenos/farmacología , Membrana Mucosa/citología , Membrana Mucosa/efectos de los fármacos , Aceites Volátiles/efectos adversos , Salud Bucal , Aceites de Plantas/efectos adversos
8.
Heliyon ; 10(2): e24246, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293435

RESUMEN

In recent years, antimicrobial peptides (AMPs) have attracted great interest in scientific research, especially for biomedical applications such as drug delivery and orthopedic applications. Since they are readily degradable in the physiological environment, scientific research has recently been trying to make AMPs more stable. Peptoids are synthetic N-substituted glycine oligomers that mimic the structure of peptides. They have a structure that does not allow proteolytic degradation, which makes them more stable while maintaining microbial activity. This structure also brings many advantages to the molecule, such as greater diversity and specificity, making it more suitable for biological applications. For the first time, a synthesized peptoid (GN2-Npm9) was used to functionalize a nanometric chemically pre-treated (CT) titanium surface for bone-contact implant applications. A preliminary characterization of the functionalized surfaces was performed using the contact angle measurements and zeta potential titration curves. These preliminary analyses confirmed the presence of the peptoid and its adsorption on CT. The functionalized surface had a hydrophilic behaviour (contact angle = 30°) but the hydrophobic tryptophan-like residues were also exposed. An electrostatic interaction between the lysine residue of GN2-Npm9 and the surface allowed a chemisorption mechanism. The biological characterization of the CT_GN2-Nmp9 surfaces demonstrated the ability to prevent surface colonization and biofilm formation by the pathogens Escherichia coli and Staphylococcus epidermidis thus showing a broad-range activity. The cytocompatibility was confirmed by human mesenchymal stem cells. Finally, a bacteria-cells co-culture model was applied to demonstrate the selective bioactivity of the CT_GN2-Nmp9 surface that was able to preserve colonizing cells adhered to the device surface from bacterial infection.

9.
Biomater Biosyst ; 14: 100095, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38912165

RESUMEN

This study evaluates the cytocompatibility of cerium-doped mesoporous bioactive glasses (Ce-MBGs) loaded with polyphenols (Ce-MBGs-Poly) for possible application in bone tissue engineering after tumour resection. We tested MBGs powders and pellets on 2D and 3D in vitro models using human bone marrow-derived mesenchymal stem cells (hMSCs), osteosarcoma cells (U2OS), and endothelial cells (EA.hy926). Promisingly, at a low concentration in culture medium, Poly-loaded MBGs powders containing 1.2 mol% of cerium inhibited U2OS metabolic activity, preserved hMSCs viability, and had no adverse effects on EA.hy926 migration. Moreover, the study discussed the possible interaction between cerium and Poly, influencing anti-cancer effects. In summary, this research provides insights into the complex interactions between Ce-MBGs, Poly, and various cell types in distinct 2D and 3D in vitro models, highlighting the potential of loaded Ce-MBGs for post-resection bone tissue engineering with a balance between pro-regenerative and anti-tumorigenic activities.

10.
Microorganisms ; 12(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543492

RESUMEN

The microbiota in the oral cavity has a strict connection to its host. Its imbalance may determine oral diseases and can also have an impact on the systemic health. Probiotic strains may help in the restoration of a balanced condition. For this purpose, we screened the antibacterial and antiadhesive activities of many viable probiotic strains (Lactobacillus acidophilus PBS066, Lactobacillus crispatus LCR030, Lactobacillus gasseri LG050, Lactiplantibacillus plantarum PBS067, Limosilactobacillus reuteri PBS072, Lacticaseibacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050, Lacticaseibacillus paracasei LPC 1101, L. paracasei LPC 1082, and L. paracasei LPC 1114) against two main oral pathogens, Streptococcus mutans and Aggregatibacter actinomycetemcomitans, involved in dental caries and periodontal disease development and progression. Considering both the agar overlay preventive and treatment models, seven probiotics determined greater inhibition zones against the tested pathogens. This behavior was further analyzed by the plate count method and scanning electron microscope imaging. L. plantarum PBS067, L. rhamnosus LRH020, L. paracasei LPC 1101, L. paracasei LPC 1082, and L. paracasei LPC 1114 prevent the growth and adhesion of oral pathogens in a strain-specific manner (p < 0.0001). These probiotics might be considered as an alternative effective adjuvant to improve oral and systemic well-being for future personalized treatments.

11.
ACS Appl Mater Interfaces ; 16(22): 28230-28244, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775439

RESUMEN

Electrospun (e-spun) fibers are generally regarded as powerful tools for cell growth in tissue regeneration applications, and the possibility of imparting functional properties to these materials represents an increasingly pursued goal. We report herein the preparation of hybrid materials in which an e-spun d,l-polylactic acid matrix, to which chitosan or crystalline nanocellulose was added to improve hydrophilicity, was loaded with different amounts of silver(0) nanoparticles (AgNP) generated onto chestnut shell lignin (CSL) (AgNP@CSL). A solvent-free mechanochemical method was used for efficient (85% of the theoretical value by XRD analysis) Ag(0) production from the reduction of AgNO3 by lignin. For comparison, e-spun fibers containing CSL alone were also prepared. SEM and TEM analyses confirmed the presence of AgNP@CSL (average size 30 nm) on the fibers. Different chemical assays indicated that the AgNP@CSL containing fibers exhibited marked antioxidant properties (EC50 1.6 ± 0.1 mg/mL, DPPH assay), although they were halved with respect to those of the CSL containing fibers, as expected because of the efficient silver ion reduction. All the fibers showed high cytocompatibility toward human mesenchymal stem cells (hMSCs) representative of the self-healing process, and their antibacterial properties were tested against the pathogens Escherichia coli (E. coli), Staphylococcus epidermidis, and Pseudomonas aeruginosa. Finally, competitive surface colonization as simulated by cocultures of hMSC and E. coli showed that AgNP@CSL loaded fibers offered the cells a targeted protection from infection, thus well balancing cytocompatibility and antibacterial properties.


Asunto(s)
Antibacterianos , Antioxidantes , Lignina , Nanopartículas del Metal , Poliésteres , Plata , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Poliésteres/química , Poliésteres/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Nanopartículas del Metal/química , Humanos , Lignina/química , Lignina/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
12.
Biomater Adv ; 160: 213866, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642518

RESUMEN

Research on biomaterials typically starts with cytocompatibility evaluation, using the ISO 10993-5 standard as a reference that relies on extract tests to determine whether the material is safe (cell metabolic activity should exceed 70 %). However, the generalized approach within the standard may not accurately reflect the material's behavior in direct contact with cells, raising concerns about its effectiveness. Calcium phosphates (CaPs) are a group of materials that, despite being highly biocompatible and promoting bone formation, still exhibit inconsistencies in basic cytotoxicity evaluations. Hence, in order to test the cytocompatibility dependence on different experimental setups and material-cell interactions, we used amorphous calcium phosphate, α-tricalcium phosphate, hydroxyapatite, and octacalcium phosphate (0.1 mg/mL to 5 mg/mL) with core cell lines of bone microenvironment: mesenchymal stem cells, osteoblast-like and endothelial cells. All materials have been characterized for their physicochemical properties before and after cellular contact and once in vitro assays were finalized, groups identified as 'cytotoxic' were further analyzed using a modified Annexin V apoptosis assay to accurately determine cell death. The obtained results showed that indirect contact following ISO standards had no sensitivity of tested cells to the materials, but direct contact tests at physiological concentrations revealed decreased metabolic activity and viability. In summary, our findings offer valuable guidelines for handling biomaterials, especially in powder form, to better evaluate their biological properties and avoid false negatives commonly associated with the traditional standard approach.


Asunto(s)
Materiales Biocompatibles , Fosfatos de Calcio , Durapatita , Ensayo de Materiales , Células Madre Mesenquimatosas , Osteoblastos , Fosfatos de Calcio/química , Materiales Biocompatibles/toxicidad , Materiales Biocompatibles/farmacología , Humanos , Ensayo de Materiales/métodos , Ensayo de Materiales/normas , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Animales
13.
ACS Appl Bio Mater ; 7(2): 936-949, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38299869

RESUMEN

In this study, a recently reported Ti-based metallic glass (MG), without any toxic element, but with a significant amount of metalloid (Si-Ge-B, 18 atom %) and minor soft element (Sn, 2 atom %), was produced in ribbon form using conventional single-roller melt-spinning. The produced Ti60Zr20Si8Ge7B3Sn2 ribbons were investigated by differential scanning calorimetry and X-ray diffraction to confirm their amorphous structure, and their corrosion properties were further investigated by open-circuit potential and cyclic polarization tests. The ribbon's surface was functionalized by tannic acid, a natural plant-based polyphenol, to enhance its performance in terms of corrosion prevention and antimicrobial efficacy. These properties can potentially be exploited in the premucosal parts of dental implants (abutments). The Folin and Ciocalteu test was used for the quantification of tannic acid (TA) grafted on the ribbon surface and of its redox activity. Fluorescent microscopy and ζ-potential measurements were used to confirm the presence of TA on the surfaces of the ribbons. The cytocompatibility evaluation (indirect and direct) of TA-functionalized Ti60Zr20Si8Ge7B3Sn2 MG ribbons toward primary human gingival fibroblast demonstrated that no significant differences in cell viability were detected between the functionalized and as-produced (control) MG ribbons. Finally, the antibacterial investigation of TA-functionalized samples against Staphylococcus aureus demonstrated the specimens' antimicrobial properties, shown by scanning electron microscopy images after 24 h, presenting a few single colonies remaining on their surfaces. The thickness of bacterial aggregations (biofilm-like) that were formed on the surface of the as-produced samples reduced from 3.5 to 1.5 µm.


Asunto(s)
Pilares Dentales , Polifenoles , Titanio , Humanos , Titanio/química , Vidrio/química , Antibacterianos/farmacología
14.
J Biomed Mater Res A ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884299

RESUMEN

Despite the significant recent advances in manufacturing materials supporting advanced dental therapies, peri-implantitis still represents a severe complication in dental implantology. Herein, a sol-gel process is proposed to easily deposit antibacterial zirconia coatings onto bulk zirconia, material, which is becoming very popular for the manufacturing of abutments. The coatings' physicochemical properties were analyzed through x-ray diffraction and scanning electron microscopy-energy-dispersive x-ray spectroscopy investigations, while their stability and wettability were assessed by microscratch testing and static contact angle measurements. Uniform gallium-doped tetragonal zirconia coatings were obtained, featuring optimal mechanical stability and a hydrophilic behavior. The biological investigations pointed out that gallium-doped zirconia coatings: (i) displayed full cytocompatibility toward human gingival fibroblasts; (ii) exhibited significant antimicrobial activity against the Aggregatibacter actinomycetemcomitans pathogen; (iii) were able to preserve the commensal Streptococcus salivarius. Furthermore, the proteomic analyses revealed that the presence of Ga did not impair the normal oral microbiota. Still, interestingly, it decreased by 17% the presence of Fusobacterium nucleatum, a gram-negative, strictly anaerobic bacteria that is naturally present in the gastrointestinal tract. Therefore, this work can provide a valuable starting point for the development of coatings aimed at easily improving zirconia dental implants' performance.

15.
Heliyon ; 10(1): e23849, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192822

RESUMEN

Prosthetic liners are mainly used as an interface between residual limbs and prosthetic sockets to minimize physical and biological damage to soft tissue. However, the closed and moist conditions within liners and the amputee's skin provide a suitable environment for bacterial growth to cause infections. This study aimed to coat a comprehensive variant material with copper oxide nanoparticles (CuO NPs) and compare their surface analysis and antibacterial properties. These materials were covered with CuO NPs solution at a concentration of 70 µg mL-1 to achieve this purpose. After drying, their surface characteristics were analyzed by measuring zeta potential, contact angle, surface roughness, and fiber arrangement. Cu-released concentration from the coatings into the acetate buffer solution by inductively coupled plasma mass spectrometry indicated that lycra and nylon quickly released Cu ions to concentrations up to ∼0.2 µg mL-1 after 24 h, causing low metabolic activity of human bone-marrow mesenchymal stem cells (bMSC) in the indirect assay. Antibacterial activity of the coated specimens was evaluated by infecting their surfaces with the Gram-positive bacteria Staphylococcus epidermidis, reporting a significant ∼40 % reduction of metabolic activity for x-dry after 24 h; in addition, the number of viable bacterial colonies adhered to the surface of this material was reduced by ∼23 times in comparison with non-treated x-dry that were visually confirmed by scanning electron microscope. In conclusion, CuO NPs x-dry shows optimistic results to pursue further experiments due to its slow speed of Cu release and prolonged antibacterial activity, as well as its compatibility with human cells.

16.
Bone ; 182: 117065, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428556

RESUMEN

INTRODUCTION: Human mesenchymal stem cells (hMSCs) sense and respond to biomechanical and biophysical stimuli, yet the involved signaling pathways are not fully identified. The clinical application of biophysical stimulation including pulsed electromagnetic field (PEMF) has gained momentum in musculoskeletal disorders and bone tissue engineering. METHODOLOGY: We herein aim to explore the role of PEMF stimulation in bone regeneration by developing trabecular bone-like tissues, and then, culturing them under bone-like mechanical stimulation in an automated perfusion bioreactor combined with a custom-made PEMF stimulator. After selecting the optimal cell seeding and culture conditions for inspecting the effects of PEMF on hMSCs, transcriptomic studies were performed on cells cultured under direct perfusion with and without PEMF stimulation. RESULTS: We were able to identify a set of signaling pathways and upstream regulators associated with PEMF stimulation and to distinguish those linked to bone regeneration. Our findings suggest that PEMF induces the immune potential of hMSCs by activating and inhibiting various immune-related pathways, such as macrophage classical activation and MSP-RON signaling in macrophages, respectively, while promoting angiogenesis and osteogenesis, which mimics the dynamic interplay of biological processes during bone healing. CONCLUSIONS: Overall, the adopted bioreactor-based investigation platform can be used to investigate the impact of PEMF stimulation on bone regeneration.


Asunto(s)
Campos Electromagnéticos , Transcriptoma , Humanos , Huesos , Regeneración Ósea , Reactores Biológicos
17.
Crit Rev Biomed Eng ; 41(6): 483-93, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24940661

RESUMEN

Tissue homeostasis depends closely on the activity and welfare of adult stem cells. These cells represent a promising tool for biomedical research since they can aid in treatment and promote the regeneration of damaged organs in many human disorders. Adult stem cells indefinitely preserve their ability to self-renew and differentiate into various phenotypes; this capacity could be promoted in vitro by particular culture conditions (differentiation media) or spontaneously induced in vivo by exploiting the biochemical and mechanical properties of the tissue in which the stem cells are implanted. Among the different sources of adult stem cells, adipose tissue is an attractive possibility thanks to its ready availability and the standard extraction techniques at our disposal today. This review discusses the isolation, characterization, and differentiation of human adipose-derived adult stem cells, as well as regeneration strategies, therapeutic uses, and adverse effects of their delivery. In particular, since oral disorders (e.g., trauma, erosion, and chronic periodontitis) often cause the loss of dental tissue along with functional, phonetic, and aesthetic impairment, this review focuses on the application of human adipose-derived adult stem cells, alone or in combination with biomaterials, in treating oral diseases.


Asunto(s)
Tejido Adiposo/citología , Células Madre Adultas , Ingeniería Celular , Odontología , Medicina Regenerativa , Animales , Biotecnología , Diferenciación Celular , Humanos , Ratones , Ratas
18.
Clin Oral Implants Res ; 24(8): 904-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22626061

RESUMEN

OBJECTIVE: The aim of the present study was to evaluate morphological changes induced by glycine powder air polishing on titanium surfaces and its effect on bacteria recolonization in comparison with sodium bicarbonate powder. MATERIALS AND METHODS: 5 mm wide and 1 mm thick titanium grade II disks were divided into three groups of treatments: (i) no treatment; (ii) air polishing with glycine powder; (iii) air polishing with sodium bicarbonate powder. Specimens were characterized by laser profilometry, scanning electron microscopy (SEM) and then installed onto removable appliances worn for 24 h by healthy volunteers. Surface contamination was evaluated using SEM and counting the number of colony forming units (CFU). RESULTS: SEM observation revealed an increased roughness with the formation of craters on samples treated with sodium bicarbonate powder, while not in glycine ones. Statistical analysis failed to show significant differences of both Ra and Rmax parameters in treated groups. SEM observation of specimens surfaces, after 24 h of permanence in the oral cavity, showed a higher contamination of the disks treated with sodium bicarbonate compared with those not treated (P < 0.05). Conversely, the group treated with glycine showed the lower contamination if compared with bicarbonate-treated group (P < 0.05). CONCLUSIONS: Air polishing with glycine powder may be considered as a better method to remove plaque from dental implant because glycine is less aggressive than sodium bicarbonate powder. Moreover, the use of glycine powder seems to have an active role on the inhibition of bacterial recolonization of implants in a short test period (24 h). Further studies are needed to demonstrate the bacteriostatic properties of glycine, envisaged on the basis of reduced contamination of the disks polished with glycine compared with those not treated.


Asunto(s)
Pilares Dentales , Materiales Dentales/química , Pulido Dental/métodos , Glicina/uso terapéutico , Titanio/química , Adulto , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Carga Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Pilares Dentales/microbiología , Placa Dental/microbiología , Contaminación de Equipos , Femenino , Humanos , Rayos Láser , Masculino , Microscopía Electrónica de Rastreo , Bicarbonato de Sodio/uso terapéutico , Propiedades de Superficie , Adulto Joven
19.
J Artif Organs ; 16(4): 397-403, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24096542

RESUMEN

Extensive skin loss and chronic wounds are still a significant challenge to clinicians: even if injured epidermis is normally able to self-renew, deep injuries can cause negative regulation of the wound healing cascade, leading to chronic wound formation. Skin-autografting surgical procedures are often limited by the poor availability of healthy tissue, whereas the use of non-self-tissues for allografts presents some severe risks. Tissue-engineered skin substitutes have recently become viable as a suitable alternative to auto- and allografts. However, biologists, biochemists, and technical engineers are still struggling to produce complex skin substitutes that can readily be transplanted in large quantities. The ambitious goal is now to construct a dermoepidermal substitute that rapidly vascularizes and optimally supports a stratifying epidermal graft on a biodegradable matrix. This review analyzes these aspects in light of the available literature and the authors' experience.


Asunto(s)
Piel Artificial , Aloinjertos , Autoinjertos , Humanos , Ingeniería de Tejidos/tendencias , Cicatrización de Heridas
20.
Polymers (Basel) ; 15(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37896333

RESUMEN

In this study, a bio-based acrylate resin derived from soybean oil was used in combination with a reactive diluent, isobornyl acrylate, to synthetize a composite scaffold reinforced with bioactive glass particles. The formulation contained acrylated epoxidized soybean oil (AESO), isobornyl acrylate (IBOA), a photo-initiator (Irgacure 819) and a bioactive glass particle. The resin showed high reactivity towards radical photopolymerisation, and the presence of the bioactive glass did not significantly affect the photocuring process. The 3D-printed samples showed different properties from the mould-polymerised samples. The glass transition temperature Tg showed an increase of 3D samples with increasing bioactive glass content, attributed to the layer-by-layer curing process that resulted in improved interaction between the bioactive glass and the polymer matrix. Scanning electron microscope analysis revealed an optimal distribution on bioactive glass within the samples. Compression tests indicated that the 3D-printed sample exhibited higher modulus compared to mould-synthetized samples, proving the enhanced mechanical behaviour of 3D-printed scaffolds. The cytocompatibility and biocompatibility of the samples were evaluated using human bone marrow mesenchymal stem cells (bMSCs). The metabolic activity and attachment of cells on the samples' surfaces were analysed, and the results demonstrated higher metabolic activity and increased cell attachment on the surfaces containing higher bioactive glass content. The viability of the cells was further confirmed through live/dead staining and reseeding experiments. Overall, this study presents a novel approach for fabricating bioactive glass reinforced scaffolds using 3D printing technology, offering potential applications in tissue engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA