Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Immunol ; 25(7): 1207-1217, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38802512

RESUMEN

The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αß heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αß+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αß+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αß+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αß+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.


Asunto(s)
Inmunidad Innata , Interferón gamma , Receptores de Antígenos de Linfocitos T gamma-delta , Receptores de Interleucina-7 , Factor de Transcripción STAT5 , Timo , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones , Humanos , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Timo/inmunología , Receptores de Interleucina-7/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/inmunología , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Ratones Noqueados , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Antígenos CD8/metabolismo , Femenino , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Interleucina-7/metabolismo
2.
Immunity ; 57(4): 840-842, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599176

RESUMEN

Stress hormones can contribute to cancer progression, but how immune cells play a role in this process is unclear. In a recent study in Cancer Cell, He et al. showed that glucocorticoids potentiate metastasis by skewing neutrophils toward pro-tumorigenic functions.


Asunto(s)
Neoplasias , Neutrófilos , Humanos , Neoplasias/patología , Microambiente Tumoral , Metástasis de la Neoplasia/patología
3.
EMBO J ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816652

RESUMEN

In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αß-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.

4.
Immunity ; 44(4): 722-4, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27096314

RESUMEN

Although it is successful for some, most melanoma patients are refractory to T cell checkpoint inhibition. In this issue of Immunity, Merad and colleagues (2016) describe a dendritic-cell-based strategy to heighten the efficacy of therapeutic anti-PD-L1 and BRAF inhibitors in mouse melanoma models.


Asunto(s)
Antígeno B7-H1 , Células Dendríticas , Animales , Humanos , Melanoma/inmunología , Linfocitos T/inmunología
5.
Nature ; 572(7770): 538-542, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31367040

RESUMEN

Cancer-associated systemic inflammation is strongly linked to poor disease outcome in patients with cancer1,2. For most human epithelial tumour types, high systemic neutrophil-to-lymphocyte ratios are associated with poor overall survival3, and experimental studies have demonstrated a causal relationship between neutrophils and metastasis4,5. However, the cancer-cell-intrinsic mechanisms that dictate the substantial heterogeneity in systemic neutrophilic inflammation between tumour-bearing hosts are largely unresolved. Here, using a panel of 16 distinct genetically engineered mouse models for breast cancer, we uncover a role for cancer-cell-intrinsic p53 as a key regulator of pro-metastatic neutrophils. Mechanistically, loss of p53 in cancer cells induced the secretion of WNT ligands that stimulate tumour-associated macrophages to produce IL-1ß, thus driving systemic inflammation. Pharmacological and genetic blockade of WNT secretion in p53-null cancer cells reverses macrophage production of IL-1ß and subsequent neutrophilic inflammation, resulting in reduced metastasis formation. Collectively, we demonstrate a mechanistic link between the loss of p53 in cancer cells, secretion of WNT ligands and systemic neutrophilia that potentiates metastatic progression. These insights illustrate the importance of the genetic makeup of breast tumours in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for patients with cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Inflamación/genética , Inflamación/patología , Metástasis de la Neoplasia/patología , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteínas Wnt/metabolismo , Animales , Neoplasias de la Mama/complicaciones , Modelos Animales de Enfermedad , Femenino , Inflamación/complicaciones , Inflamación/inmunología , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Ratones , Neutrófilos/inmunología
6.
Immunol Rev ; 298(1): 198-217, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32840001

RESUMEN

Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations-γδ intraepithelial lymphocytes (γδ IELs)-and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T gamma-delta , Humanos , Inmunoterapia , Subgrupos de Linfocitos T
7.
Eur J Immunol ; 51(12): 3228-3238, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34633664

RESUMEN

The use of bacteria as an alternative cancer therapy has been reinvestigated in recent years. SL7207: an auxotrophic Salmonella enterica serovar Typhimurium aroA mutant with immune-stimulatory potential has proven a promising strain for this purpose. Here, we show that systemic administration of SL7207 induces melanoma tumor growth arrest in vivo, with greater survival of the SL7207-treated group compared to control PBS-treated mice. Administration of SL7207 is accompanied by a change in the immune phenotype of the tumor-infiltrating cells toward pro-inflammatory, with expression of the TH 1 cytokines IFN-γ, TNF-α, and IL-12 significantly increased. Interestingly, Ly6C+ MHCII+ monocytes were recruited to the tumors following SL7207 treatment and were pro-inflammatory. Accordingly, the abrogation of these infiltrating monocytes using clodronate liposomes prevented SL7207-induced tumor growth inhibition. These data demonstrate a previously unappreciated role for infiltrating inflammatory monocytes underlying bacterial-mediated tumor growth inhibition. This information highlights a possible novel role for monocytes in controlling tumor growth, contributing to our understanding of the immune responses required for successful immunotherapy of cancer.


Asunto(s)
Inmunoterapia , Melanoma Experimental , Monocitos/inmunología , Salmonella typhimurium/inmunología , Células TH1/inmunología , Animales , Citocinas/inmunología , Femenino , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Ratones , Salmonella typhimurium/genética
8.
Br J Cancer ; 124(1): 37-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262520

RESUMEN

Major advances in cancer immunotherapy have dramatically expanded the potential to manipulate immune cells in cancer patients with metastatic disease to counteract cancer spread and extend patient lifespan. One of the most successful types of immunotherapy is the immune checkpoint inhibitors, such as anti-CTLA-4 and anti-PD-1, that keep anti-tumour T cells active. However, not every patient with metastatic disease benefits from this class of drugs and patients often develop resistance to these therapies over time. Tremendous research effort is now underway to uncover new immunotherapeutic targets that can be used in patients who are refractory to anti-CTLA-4 or anti-PD-1 treatment. Here, we discuss results from experimental model systems demonstrating that modulating the immune response can negatively affect metastasis formation. We focus on molecules that boost anti-tumour immune cells and opportunities to block immunosuppression, as well as cell-based therapies with enhanced tumour recognition properties for solid tumours. We also present a list of challenges in treating metastatic disease with immunotherapy that must be considered in order to move laboratory observations into clinical practice and maximise patient benefit.


Asunto(s)
Inmunoterapia/métodos , Metástasis de la Neoplasia/terapia , Neoplasias/patología , Neoplasias/terapia , Animales , Humanos , Metástasis de la Neoplasia/patología
9.
Nature ; 522(7556): 345-348, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25822788

RESUMEN

Metastatic disease remains the primary cause of death for patients with breast cancer. The different steps of the metastatic cascade rely on reciprocal interactions between cancer cells and their microenvironment. Within this local microenvironment and in distant organs, immune cells and their mediators are known to facilitate metastasis formation. However, the precise contribution of tumour-induced systemic inflammation to metastasis and the mechanisms regulating systemic inflammation are poorly understood. Here we show that tumours maximize their chance of metastasizing by evoking a systemic inflammatory cascade in mouse models of spontaneous breast cancer metastasis. We mechanistically demonstrate that interleukin (IL)-1ß elicits IL-17 expression from gamma delta (γδ) T cells, resulting in systemic, granulocyte colony-stimulating factor (G-CSF)-dependent expansion and polarization of neutrophils in mice bearing mammary tumours. Tumour-induced neutrophils acquire the ability to suppress cytotoxic T lymphocytes carrying the CD8 antigen, which limit the establishment of metastases. Neutralization of IL-17 or G-CSF and absence of γδ T cells prevents neutrophil accumulation and downregulates the T-cell-suppressive phenotype of neutrophils. Moreover, the absence of γδ T cells or neutrophils profoundly reduces pulmonary and lymph node metastases without influencing primary tumour progression. Our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system--the γδ T cell/IL-17/neutrophil axis--represents a new strategy to inhibit metastatic disease.


Asunto(s)
Neoplasias de la Mama/patología , Interleucina-17/biosíntesis , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Neutrófilos/metabolismo , Subgrupos de Linfocitos T/metabolismo , Animales , Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos/inmunología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Interleucina-17/inmunología , Interleucina-1beta/inmunología , Pulmón/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Metástasis Linfática/inmunología , Metástasis Linfática/patología , Activación de Linfocitos , Ratones , Neutrófilos/citología , Neutrófilos/inmunología , Fenotipo , Subgrupos de Linfocitos T/inmunología , Microambiente Tumoral
11.
Trends Immunol ; 36(4): 198-216, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25857662

RESUMEN

Conventional anticancer therapies, such as chemotherapy, radiotherapy, and targeted therapy, are designed to kill cancer cells. However, the efficacy of anticancer therapies is not only determined by their direct effects on cancer cells but also by off-target effects within the host immune system. Cytotoxic treatment regimens elicit several changes in immune-related parameters including the composition, phenotype, and function of immune cells. Here we discuss the impact of innate and adaptive immune cells on the success of anticancer therapy. In this context we examine the opportunities to exploit host immune responses to boost tumor clearing, and highlight the challenges facing the treatment of advanced metastatic disease.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Humanos , Neoplasias/patología
13.
Cell Discov ; 10(1): 64, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834551

RESUMEN

Effective antibody responses are essential to generate protective humoral immunity. Different inflammatory signals polarize T cells towards appropriate effector phenotypes during an infection or immunization. Th1 and Th2 cells have been associated with the polarization of humoral responses. However, T follicular helper cells (Tfh) have a unique ability to access the B cell follicle and support the germinal center (GC) responses by providing B cell help. We investigated the specialization of Tfh cells induced under type-1 and type-2 conditions. We first studied homogenous Tfh cell populations generated by adoptively transferred TCR-transgenic T cells in mice immunized with type-1 and type-2 adjuvants. Using a machine learning approach, we established a gene expression signature that discriminates Tfh cells polarized towards type-1 and type-2 response, defined as Tfh1 and Tfh2 cells. The distinct signatures of Tfh1 and Tfh2 cells were validated against datasets of Tfh cells induced following lymphocytic choriomeningitis virus (LCMV) or helminth infection. We generated single-cell and spatial transcriptomics datasets to dissect the heterogeneity of Tfh cells and their localization under the two immunizing conditions. Besides a distinct specialization of GC Tfh cells under the two immunizations and in different regions of the lymph nodes, we found a population of Gzmk+ Tfh cells specific for type-1 conditions. In human individuals, we could equally identify CMV-specific Tfh cells that expressed Gzmk. Our results show that Tfh cells acquire a specialized function under distinct types of immune responses and with particular properties within the B cell follicle and the GC.

14.
Nat Commun ; 15(1): 1090, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316788

RESUMEN

Macrophages are fundamental cells of the innate immune system that support normal haematopoiesis and play roles in both anti-cancer immunity and tumour progression. Here we use a chimeric mouse model of chronic myeloid leukaemia (CML) and human bone marrow (BM) derived macrophages to study the impact of the dysregulated BM microenvironment on bystander macrophages. Utilising single-cell RNA sequencing (scRNA-seq) of Philadelphia chromosome (Ph) negative macrophages we reveal unique subpopulations of immature macrophages residing in the CML BM microenvironment. CML exposed macrophages separate from their normal counterparts by reduced expression of the surface marker CD36, which significantly reduces clearance of apoptotic cells. We uncover aberrant production of CML-secreted factors, including the immune modulatory protein lactotransferrin (LTF), that suppresses efferocytosis, phagocytosis, and CD36 surface expression in BM macrophages, indicating that the elevated secretion of LTF is, at least partially responsible for the supressed clearance function of Ph- macrophages.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide , Animales , Ratones , Humanos , Médula Ósea/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mieloide/patología , Cromosoma Filadelfia , Macrófagos/metabolismo , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Microambiente Tumoral/genética
15.
Genesis ; 51(1): 41-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22927121

RESUMEN

Macrophages play an essential role in tissue homeostasis, innate immunity, inflammation, and wound repair. Macrophages are also essential during development, severely limiting the use of mouse models in which these cells have been constitutively deleted. Consequently, we have developed a transgenic model of inducible macrophage depletion in which macrophage-specific induction of the cytotoxic diphtheria toxin A chain (DTA) is achieved by administration of doxycycline. Induction of the DTA protein in transgenic animals resulted in a significant 50% reduction in CD68+ macrophages of the liver, spleen, and bone over a period of 6 weeks. Pertinently, the macrophages remaining after doxycycline treatment were substantially smaller and are functionally impaired as shown by reduced inflammatory cytokine production in response to lipopolysaccharide. This inducible model of macrophage depletion can now be utilized to determine the role of macrophages in both development and animal models of chronic inflammatory diseases.


Asunto(s)
Macrófagos/fisiología , Ratones Transgénicos , Modelos Animales , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Huesos/citología , Citocinas/inmunología , Toxina Diftérica/genética , Doxiciclina/toxicidad , Terapia de Inmunosupresión , Lipopolisacáridos/inmunología , Hígado/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Fragmentos de Péptidos/genética , Bazo/citología
16.
J Immunol ; 186(7): 4183-90, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21368233

RESUMEN

Angiopoietin 2 (ANGPT2) is a proangiogenic cytokine whose expression is often upregulated by endothelial cells in tumors. Expression of its receptor, TIE2, defines a highly proangiogenic subpopulation of myeloid cells in circulation and tumors called TIE2-expressing monocytes/macrophages (TEMs). Genetic depletion of TEMs markedly reduces tumor angiogenesis in various tumor models, emphasizing their essential role in driving tumor progression. Previously, we demonstrated that ANGPT2 augments the expression of various proangiogenic genes, the potent immunosuppressive cytokine, IL-10, and a chemokine for regulatory T cells (Tregs), CCL17 by TEMs in vitro. We now show that TEMs also express higher levels of IL-10 than TIE2(-) macrophages in tumors and that ANGPT2-stimulated release of IL-10 by TEMs suppresses T cell proliferation, increases the ratio of CD4(+) T cells to CD8(+) T cells, and promotes the expansion of CD4(+)CD25(high)FOXP3(+) Tregs. Furthermore, syngeneic murine tumors expressing high levels of ANGPT2 contained not only high numbers of TEMs but also increased numbers of Tregs, whereas genetic depletion of tumor TEMs resulted in a marked reduction in the frequency of Tregs in tumors. Taken together, our data suggest that ANGPT2-stimulated TEMs represent a novel, potent immunosuppressive force in tumors.


Asunto(s)
Angiopoyetina 2/fisiología , Proteínas de Ciclo Celular/fisiología , Diferenciación Celular/inmunología , Proteínas de Unión al ADN/fisiología , Activación de Linfocitos/inmunología , Monocitos/inmunología , Neovascularización Patológica/inmunología , Proteínas Represoras/fisiología , Linfocitos T Reguladores/inmunología , Factores de Transcripción/fisiología , Animales , Proteínas Reguladoras de la Apoptosis , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/patología , Proteínas de Ciclo Celular/biosíntesis , Línea Celular Tumoral , Técnicas de Cocultivo , Proteínas de Unión al ADN/biosíntesis , Inhibidores de Crecimiento/biosíntesis , Inhibidores de Crecimiento/fisiología , Humanos , Interleucina-10/biosíntesis , Interleucina-10/metabolismo , Interleucina-10/fisiología , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Monocitos/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Proteínas Represoras/biosíntesis , Linfocitos T Reguladores/citología , Factores de Transcripción/biosíntesis
17.
Med ; 4(3): 141-142, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36905925

RESUMEN

Why is checkpoint blockade immunotherapy still effective in tumors that are unrecognizable to CD8+ T cells? In a recent study published in Nature, de Vries et al.1 provide evidence that the lesser-known γδ T cell population may mediate beneficial responses to immune checkpoint blockade when cancer cells lose HLA expression.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias del Colon , Humanos , Linfocitos T CD8-positivos/metabolismo , Neoplasias del Colon/metabolismo
18.
J Exp Med ; 220(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36480166

RESUMEN

IL-17A-producing γδ T cells in mice consist primarily of Vγ6+ tissue-resident cells and Vγ4+ circulating cells. How these γδ T cell subsets are regulated during homeostasis and cancer remains poorly understood. Using single-cell RNA sequencing and flow cytommetry, we show that lung Vγ4+ and Vγ6+ cells from tumor-free and tumor-bearing mice express contrasting cell surface molecules as well as distinct co-inhibitory molecules, which function to suppress their expansion. Vγ6+ cells express constitutively high levels of PD-1, whereas Vγ4+ cells upregulate TIM-3 in response to tumor-derived IL-1ß and IL-23. Inhibition of either PD-1 or TIM-3 in mammary tumor-bearing mice increased Vγ6+ and Vγ4+ cell numbers, respectively. We found that genetic deletion of γδ T cells elicits responsiveness to anti-PD-1 and anti-TIM-3 immunotherapy in a mammary tumor model that is refractory to T cell checkpoint inhibitors, indicating that IL-17A-producing γδ T cells instigate resistance to immunotherapy. Together, these data demonstrate how lung IL-17A-producing γδ T cell subsets are differentially controlled by PD-1 and TIM-3 in steady-state and cancer.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Interleucina-17 , Neoplasias , Receptor de Muerte Celular Programada 1 , Subgrupos de Linfocitos T , Animales , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo
19.
Nat Commun ; 14(1): 5279, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644007

RESUMEN

African trypanosomes colonise the skin to ensure parasite transmission. However, how the skin responds to trypanosome infection remains unresolved. Here, we investigate the local immune response of the skin in a murine model of infection using spatial and single cell transcriptomics. We detect expansion of dermal IL-17A-producing Vγ6+ cells during infection, which occurs in the subcutaneous adipose tissue. In silico cell-cell communication analysis suggests that subcutaneous interstitial preadipocytes trigger T cell activation via Cd40 and Tnfsf18 signalling, amongst others. In vivo, we observe that female mice deficient for IL-17A-producing Vγ6+ cells show extensive inflammation and limit subcutaneous adipose tissue wasting, independently of parasite burden. Based on these observations, we propose that subcutaneous adipocytes and Vγ6+ cells act in concert to limit skin inflammation and adipose tissue wasting. These studies provide new insights into the role of γδ T cell and subcutaneous adipocytes as homeostatic regulators of skin immunity during chronic infection.


Asunto(s)
Dermatitis , Trypanosoma brucei brucei , Femenino , Animales , Ratones , Interleucina-17 , Infección Persistente , Adiposidad , Obesidad , Caquexia , Inflamación
20.
Cancer Immunol Res ; 11(8): 1137-1155, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37309673

RESUMEN

Intraepithelial lymphocytes (IEL) expressing γδ T-cell receptors (γδTCR) play key roles in elimination of colon cancer. However, the precise mechanisms by which progressing cancer cells evade immunosurveillance by these innate T cells are unknown. Here, we investigated how loss of the Apc tumor suppressor in gut tissue could enable nascent cancer cells to escape immunosurveillance by cytotoxic γδIELs. In contrast with healthy intestinal or colonic tissue, we found that γδIELs were largely absent from the microenvironment of both mouse and human tumors, and that butyrophilin-like (BTNL) molecules, which can critically regulate γδIEL through direct γδTCR interactions, were also downregulated in tumors. We then demonstrated that ß-catenin activation through loss of Apc rapidly suppressed expression of the mRNA encoding the HNF4A and HNF4G transcription factors, preventing their binding to promoter regions of Btnl genes. Reexpression of BTNL1 and BTNL6 in cancer cells increased γδIEL survival and activation in coculture assays but failed to augment their cancer-killing ability in vitro or their recruitment to orthotopic tumors. However, inhibition of ß-catenin signaling via genetic deletion of Bcl9/Bcl9L in either Apc-deficient or mutant ß-catenin mouse models restored Hnf4a, Hnf4g, and Btnl gene expression and γδ T-cell infiltration into tumors. These observations highlight an immune-evasion mechanism specific to WNT-driven colon cancer cells that disrupts γδIEL immunosurveillance and furthers cancer progression.


Asunto(s)
Neoplasias del Colon , Linfocitos Intraepiteliales , Ratones , Animales , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linfocitos Intraepiteliales/metabolismo , Butirofilinas/genética , Butirofilinas/metabolismo , Neoplasias del Colon/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA