RESUMEN
Biological processes in the Proterozoic Ocean are often inferred from modern oxygen-deficient environments (MODEs) or from stable isotopes in preserved sediment. To date, few MODE studies have simultaneously quantified carbon fixation genes and attendant stable isotopic signatures. Consequently, how carbon isotope patterns reflect these pathways has not been thoroughly vetted. Addressing this, we profiled planktonic productivity and quantified carbon fixation pathway genes and associated organic carbon isotope values (δ13 CPOC ) of size-fractionated (0.2-2.7 and >2.7 µm) particulate matter from meromictic Fayetteville Green Lake, NY, USA. The high-O2 Calvin-Benson-Bassham (CBB) gene (cbbL) was most abundant in the <2.7 µm size fraction in shallow oxic and deep hypoxic waters, corresponding with cyanobacterial and eukaryote algal populations. The low-O2 CBB gene (cbbM) was most abundant near the lower oxycline boundary in the larger size fraction, coincident with purple sulfur bacteria populations. The reverse citric acid cycle gene (aclB) was equally abundant in both size fractions in the deepest photic zone, coinciding with green sulfur bacteria populations. Methane coenzyme reductase A (mcrA), of anaerobic methane cyclers, was most abundant at the lower oxycline boundary in both size fractions, coinciding with Methanoregula populations. δ13 CPOC values overlapped with the high-O2 CBB fixation range except for two negative excursions near the lower oxycline boundary, likely reflecting assimilation of isotopically-depleted groundwater-derived carbon by autotrophs and sulfate-reducers. Throughout aphotic waters, δ13 CPOC values of the large size fraction became 13 C-enriched, likely reflecting abundant purple sulfur bacterial aggregates. Eukaryote algae- or cyanobacteria-like isotopic signatures corresponded with increases in cbbL, cbbM, and aclB, and enrichment of exopolymer-rich prokaryotic photoautotrophs aggregates. Results suggest that δ13 CPOC values of preserved sediments from areas of the Proterozoic Ocean with sulfidic photic zones may reflect a mixture of alternate carbon-fixing populations exported from the deep photic zone, challenging the paradigm that sedimentary stable carbon isotope values predominantly reflect oxygenic photosynthesis from surface waters.
Asunto(s)
Chromatiaceae , Cianobacterias , Carbono/metabolismo , Lagos/microbiología , Isótopos de Carbono/análisis , Cianobacterias/metabolismo , Oxígeno/análisis , Chromatiaceae/metabolismo , Metano , Océanos y MaresRESUMEN
Microbial iron cycling influences the flux of major nutrients in the environment (e.g., through the adsorptive capacity of iron oxides) and includes biotically induced iron oxidation and reduction processes. The ecological extent of microbial iron cycling is not well understood, even with increased sequencing efforts, in part due to limitations in gene annotation pipelines and limitations in experimental studies linking phenotype to genotype. This is particularly true for the marine subseafloor, which remains undersampled, but represents the largest contiguous habitat on Earth. To address this limitation, we used FeGenie, a database and bioinformatics tool that identifies microbial iron cycling genes and enables the development of testable hypotheses on the biogeochemical cycling of iron. Herein, we survey the microbial iron cycle in diverse subseafloor habitats, including sediment-buried crustal aquifers, as well as surficial and deep sediments. We inferred the genetic potential for iron redox cycling in 32 of the 46 metagenomes included in our analysis, demonstrating the prevalence of these activities across underexplored subseafloor ecosystems. We show that while some processes (e.g., iron uptake and storage, siderophore transport potential, and iron gene regulation) are near-universal, others (e.g., iron reduction/oxidation, siderophore synthesis, and magnetosome formation) are dependent on local redox and nutrient status. Additionally, we detected niche-specific differences in strategies used for dissimilatory iron reduction, suggesting that geochemical constraints likely play an important role in dictating the dominant mechanisms for iron cycling. Overall, our survey advances the known distribution, magnitude, and potential ecological impact of microbe-mediated iron cycling and utilization in sub-benthic ecosystems.