Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 81, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486328

RESUMEN

BACKGROUND: Immune-checkpoint inhibitors (ICIs) have showed unprecedent efficacy in the treatment of patients with advanced non-small cell lung cancer (NSCLC). However, not all patients manifest clinical benefit due to the lack of reliable predictive biomarkers. We showed preliminary data on the predictive role of the combination of radiomics and plasma extracellular vesicle (EV) PD-L1 to predict durable response to ICIs. MAIN BODY: Here, we validated this model in a prospective cohort of patients receiving ICIs plus chemotherapy and compared it with patients undergoing chemotherapy alone. This multiparametric model showed high sensitivity and specificity at identifying non-responders to ICIs and outperformed tissue PD-L1, being directly correlated with tumor change. SHORT CONCLUSION: These findings indicate that the combination of radiomics and EV PD-L1 dynamics is a minimally invasive and promising biomarker for the stratification of patients to receive ICIs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Antígeno B7-H1/uso terapéutico , Radiómica , Multiómica , Estudios Prospectivos , Biomarcadores de Tumor , Inmunoterapia , Vesículas Extracelulares/patología
2.
Head Neck ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080968

RESUMEN

BACKGROUND: We retrospectively evaluated radiomics as a predictor of the tumor microenvironment (TME) and efficacy with anti-PD-1 mAb (IO) in R/M HNSCC. METHODS: Radiomic feature extraction was performed on pre-treatment CT scans segmented using 3D slicer v4.10.2 and key features were selected using LASSO regularization method to build classification models with XGBoost algorithm by incorporating cross-validation techniques to calculate accuracy, sensitivity, and specificity. Outcome measures evaluated were disease control rate (DCR) by RECIST 1.1, PFS, and OS and hypoxia and CD8 T cells in the TME. RESULTS: Radiomics features predicted DCR with accuracy, sensitivity, and specificity of 76%, 73%, and 83%, for OS 77%, 86%, 70%, PFS 82%, 75%, 89%, and in the TME, for high hypoxia 80%, 88%, and 72% and high CD8 T cells 91%, 83%, and 100%, respectively. CONCLUSION: Radiomics accurately predicted the efficacy of IO and features of the TME in R/M HNSCC. Further study in a larger patient population is warranted.

3.
World Neurosurg ; 184: e137-e143, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38253177

RESUMEN

BACKGROUND: Preoperative symptom severity in cervical spondylotic myelopathy (CSM) can be variable. Radiomic signatures could provide an imaging biomarker for symptom severity in CSM. This study utilizes radiomic signatures of T1-weighted and T2-weighted magnetic resonance imaging images to correlate with preoperative symptom severity based on modified Japanese Orthopaedic Association (mJOA) scores for patients with CSM. METHODS: Sixty-two patients with CSM were identified. Preoperative T1-weighted and T2-weighted magnetic resonance imaging images for each patient were segmented from C2-C7. A total of 205 texture features were extracted from each volume of interest. After feature normalization, each second-order feature was further subdivided to yield a total of 400 features from each volume of interest for analysis. Supervised machine learning was used to build radiomic models. RESULTS: The patient cohort had a median mJOA preoperative score of 13; of which, 30 patients had a score of >13 (low severity) and 32 patients had a score of ≤13 (high severity). Radiomic analysis of T2-weighted imaging resulted in 4 radiomic signatures that correlated with preoperative mJOA with a sensitivity, specificity, and accuracy of 78%, 89%, and 83%, respectively (P < 0.004). The area under the curve value for the ROC curves were 0.69, 0.70, and 0.77 for models generated by independent T1 texture features, T1 and T2 texture features in combination, and independent T2 texture features, respectively. CONCLUSIONS: Radiomic models correlate with preoperative mJOA scores using T2 texture features in patients with CSM. This may serve as a surrogate, objective imaging biomarker to measure the preoperative functional status of patients.


Asunto(s)
Enfermedades de la Médula Espinal , Espondilosis , Humanos , Resultado del Tratamiento , Radiómica , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Enfermedades de la Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Vértebras Cervicales/patología , Espondilosis/diagnóstico por imagen , Espondilosis/cirugía , Espondilosis/complicaciones , Biomarcadores
4.
medRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712112

RESUMEN

Background: Variability in treatment response may be attributable to organ-level heterogeneity in tumor lesions. Radiomic analysis of medical images can elucidate non-invasive biomarkers of clinical outcome. Organ-specific radiomic comparison across immunotherapies and targeted therapies has not been previously reported. Methods: We queried UPMC Hillman Cancer Center registry for patients with metastatic melanoma (MEL) treated with immune checkpoint inhibitors (ICI) (anti-PD1/CTLA4 [ipilimumab+nivolumab; I+N] or anti-PD1 monotherapy) or BRAF targeted therapy. Best overall response was measured using RECIST v1.1. Lesions were segmented into discrete volume-of-interest with 400 radiomics features extracted. Overall and organ-specific machine-learning models were constructed to predict disease control (DC) versus progressive disease (PD) using XGBoost. Results: 291 MEL patients were identified, including 242 ICI (91 I+N, 151 PD1) and 49 BRAF. 667 metastases were analyzed, including 541 ICI (236 I+N, 305 PD1) and 126 BRAF. Across cohorts, baseline demographics included 39-47% female, 24-29% M1C, 24-46% M1D, and 61-80% with elevated LDH. Among patients experiencing DC, the organs with the greatest reduction were liver (-88%±12%, I+N; mean±S.E.M.) and lung (-72%±8%, I+N). For patients with multiple same-organ target lesions, the highest inter-lesion heterogeneity was observed in brain among patients who received ICI while no intra-organ heterogeneity was observed in BRAF. 267 patients were kept for radiomic modeling, including 221 ICI (86 I+N, 135 PD1) and 46 BRAF. Models consisting of optimized radiomic signatures classified DC/PD across I+N (AUC=0.85) and PD1 (0.71) and within individual organ sites (AUC=0.72∼0.94). Integration of clinical variables improved the models' performance. Comparison of models between treatments and across organ sites suggested mostly non-overlapping DC or PD features. Skewness, kurtosis, and informational measure of correlation (IMC) were among the radiomic features shared between overall response models. Kurtosis and IMC were also utilized by multiple organ-site models. Conclusions: Differential organ-specific response was observed across BRAF and ICI with within organ heterogeneity observed for ICI but not for BRAF. Radiomic features of organ-specific response demonstrated little overlap. Integrating clinical factors with radiomics improves the prediction of disease course outcome and prediction of tumor heterogeneity.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38684319

RESUMEN

BACKGROUND: Understanding sex-based differences in glioblastoma patients is necessary for accurate personalized treatment planning to improve patient outcomes. PURPOSE: To investigate sex-specific differences in molecular, clinical and radiological tumor parameters, as well as survival outcomes in glioblastoma, isocitrate dehydrogenase-1 wildtype (IDH1-WT), grade 4 patients. METHODS: Retrospective data of 1832 glioblastoma, IDH1-WT patients with comprehensive information on tumor parameters was acquired from the Radiomics Signatures for Precision Oncology in Glioblastoma (ReSPOND) consortium. Data imputation was performed for missing values. Sex-based differences in tumor parameters, such as, age, molecular parameters, pre-operative KPS score, tumor volumes, epicenter and laterality were assessed through non-parametric tests. Spatial atlases were generated using pre-operative MRI maps to visualize tumor characteristics. Survival time analysis was performed through log-rank tests and Cox proportional hazard analyses. RESULTS: GBM was diagnosed at a median age of 64 years in females compared to 61.9 years in males (FDR = 0.003). Males had a higher Karnofsky Performance Score (above 80) as compared to females (60.4% females Vs 69.7% males, FDR = 0.044). Females had lower tumor volumes in enhancing (16.7 cm3 Vs. 20.6 cm3 in males, FDR = 0.001), necrotic core (6.18 cm3 Vs. 7.76 cm3 in males, FDR = 0.001) and edema regions (46.9 cm3 Vs. 59.2 cm3 in males, FDR = 0.0001). Right temporal region was the most common tumor epicenter in the overall population. Right as well as left temporal lobes were more frequently involved in males. There were no significant differences in survival outcomes and mortality ratios. Higher age, unmethylated O6-methylguanine-DNAmethyltransferase (MGMT) promoter and undergoing subtotal resection increased the mortality risk in both males and females. CONCLUSIONS: Our study demonstrates significant sex-based differences in clinical and radiological tumor parameters of glioblastoma, IDH1-WT, grade 4 patients. Sex is not an independent prognostic factor for survival outcomes and the tumor parameters influencing patient outcomes are identical for males and females. ABBREVIATIONS: IDH1-WT = isocitrate dehydrogenase-1 wildtype; MGMTp = O6-methylguanine-DNA-methyltransferase promoter; KPS = Karnofsky performance score; EOR = extent of resection; WHO = world health organization; FDR = false discovery rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA