Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(4): 813-827, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675495

RESUMEN

Cellular senescence is a cell state implicated in various physiological processes and a wide spectrum of age-related diseases. Recently, interest in therapeutically targeting senescence to improve healthy aging and age-related disease, otherwise known as senotherapy, has been growing rapidly. Thus, the accurate detection of senescent cells, especially in vivo, is essential. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence, SeneQuest (available at http://Senequest.net). Lastly, we propose an algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo.


Asunto(s)
Envejecimiento/genética , Biomarcadores , Senescencia Celular/genética , Enfermedades Genéticas Congénitas/genética , Puntos de Control del Ciclo Celular/genética , Cromatina/genética , Regulación de la Expresión Génica/genética , Enfermedades Genéticas Congénitas/terapia , Humanos
2.
Cell ; 155(5): 1104-18, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24238962

RESUMEN

Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-ß/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence.


Asunto(s)
Senescencia Celular , Desarrollo Embrionario , Saco Endolinfático/embriología , Mesonefro/embriología , Animales , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Saco Endolinfático/citología , Femenino , Humanos , Riñón/embriología , Masculino , Mesonefro/citología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
Nucleic Acids Res ; 51(19): 10109-10131, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37738673

RESUMEN

Enhancer reprogramming has been proposed as a key source of transcriptional dysregulation during tumorigenesis, but the molecular mechanisms underlying this process remain unclear. Here, we identify an enhancer cluster required for normal development that is aberrantly activated in breast and lung adenocarcinoma. Deletion of the SRR124-134 cluster disrupts expression of the SOX2 oncogene, dysregulates genome-wide transcription and chromatin accessibility and reduces the ability of cancer cells to form colonies in vitro. Analysis of primary tumors reveals a correlation between chromatin accessibility at this cluster and SOX2 overexpression in breast and lung cancer patients. We demonstrate that FOXA1 is an activator and NFIB is a repressor of SRR124-134 activity and SOX2 transcription in cancer cells, revealing a co-opting of the regulatory mechanisms involved in early development. Notably, we show that the conserved SRR124 and SRR134 regions are essential during mouse development, where homozygous deletion results in the lethal failure of esophageal-tracheal separation. These findings provide insights into how developmental enhancers can be reprogrammed during tumorigenesis and underscore the importance of understanding enhancer dynamics during development and disease.


The manuscript by Abatti et al. shows that epigenetic reactivation of a pair of distal enhancers that drive Sox2 expression during development (to permit separation of the esophagus and trachea) is responsible for the tumor-promoting re-expression of SOX2 in breast and lung tumors. Intriguingly, the same transcription factors that act on the enhancers during development to either activate or repress them (i.e. FOXA1 and NFIB, respectively) are also required for altering chromatin accessibility of the enhancers and SOX2 transcription in breast and lung cancer cells. With their work, the authors unravel the exact mechanism of how developmentally active enhancers become repurposed in a tumor context and show the relevance of this repurposing event for cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Factores de Transcripción SOXB1 , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Carcinogénesis/genética , Cromatina/genética , Elementos de Facilitación Genéticos , Epigénesis Genética , Homocigoto , Neoplasias Pulmonares/genética , Eliminación de Secuencia , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
4.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37108477

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers in Western countries and remains the second most common cause of cancer death worldwide. Many studies show the importance of diet and lifestyle in the incidence of CRC, as well as in CRC prevention. However, this review summarizes those studies that analyze the impact of nutrition on tumor microenvironment modulation and cancer progression. We review the available information about the effects of specific nutrients on cancer cell progression and on the different cells within the tumor microenvironment. Diet and nutritional status in the clinical management of colorectal cancer patients are also analyzed. Finally, future perspectives and challenges are discussed, with a view to improving CRC treatments by employing nutritional approaches. These promise great benefits and will eventually improve CRC patients' survival.


Asunto(s)
Neoplasias Colorrectales , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/patología , Dieta , Estilo de Vida
5.
Cell Mol Life Sci ; 78(8): 4053-4065, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33834259

RESUMEN

Class I PI3K are heterodimers composed of a p85 regulatory subunit and a p110 catalytic subunit involved in multiple cellular functions. Recently, the catalytic subunit p110ß has emerged as a class I PI3K isoform playing a major role in tumorigenesis. Understanding its regulation is crucial for the control of the PI3K pathway in p110ß-driven cancers. Here we sought to evaluate the putative regulation of p110ß by SUMO. Our data show that p110ß can be modified by SUMO1 and SUMO2 in vitro, in transfected cells and under completely endogenous conditions, supporting the physiological relevance of p110ß SUMOylation. We identify lysine residue 952, located at the activation loop of p110ß, as essential for SUMOylation. SUMOylation of p110ß stabilizes the protein increasing its activation of AKT which promotes cell growth and oncogenic transformation. Finally, we show that the regulatory subunit p85ß counteracts the conjugation of SUMO to p110ß. In summary, our data reveal that SUMO is a novel p110ß interacting partner with a positive effect on the activation of the PI3K pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Sumoilación , Animales , Dominio Catalítico , Fosfatidilinositol 3-Quinasa Clase Ia/química , Activación Enzimática , Estabilidad de Enzimas , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Células PC-3 , Transducción de Señal
6.
FASEB J ; 33(1): 643-651, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30024791

RESUMEN

The ribosomal protein L11 (RPL11) integrates different types of stress into a p53-mediated response. Here, we analyzed the impact of the ubiquitin-like protein SUMO on the RPL11-mouse double-minute 2 homolog-p53 signaling. We show that small ubiquitin-related modifier (SUMO)1 and SUMO2 covalently modify RPL11. We find that SUMO negatively modulates the conjugation of the ubiquitin-like protein neural precursor cell-expressed developmentally downregulated 8 (NEDD8) to RPL11 and promotes the translocation of the RP outside of the nucleoli. Moreover, the SUMO-conjugating enzyme, Ubc9, is required for RPL11-mediated activation of p53. SUMOylation of RPL11 is triggered by ribosomal stress, as well as by alternate reading frame protein upregulation. Collectively, our data identify SUMO protein conjugation to RPL11 as a new regulator of the p53-mediated cellular response to different types of stress and reveal a previously unknown SUMO-NEDD8 interplay.-El Motiam, A., Vidal, S., de la Cruz-Herrera, C. F., Da Silva-Álvarez, S., Baz-Martínez, M., Seoane, R., Vidal, A., Rodríguez, M. S., Xirodimas, D. P., Carvalho, A. S., Beck, H. C., Matthiesen, R., Collado, M., Rivas, C. Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function.


Asunto(s)
Proteína NEDD8/metabolismo , Neoplasias/patología , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitinas/metabolismo , Células HEK293 , Humanos , Neoplasias/metabolismo , Células Tumorales Cultivadas
7.
Nature ; 515(7525): 134-7, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25156255

RESUMEN

Aberrant activation of oncogenes or loss of tumour suppressor genes opposes malignant transformation by triggering a stable arrest in cell growth, which is termed cellular senescence. This process is finely tuned by both cell-autonomous and non-cell-autonomous mechanisms that regulate the entry of tumour cells to senescence. Whether tumour-infiltrating immune cells can oppose senescence is unknown. Here we show that at the onset of senescence, PTEN null prostate tumours in mice are massively infiltrated by a population of CD11b(+)Gr-1(+) myeloid cells that protect a fraction of proliferating tumour cells from senescence, thus sustaining tumour growth. Mechanistically, we found that Gr-1(+) cells antagonize senescence in a paracrine manner by interfering with the senescence-associated secretory phenotype of the tumour through the secretion of interleukin-1 receptor antagonist (IL-1RA). Strikingly, Pten-loss-induced cellular senescence was enhanced in vivo when Il1ra knockout myeloid cells were adoptively transferred to PTEN null mice. Therapeutically, docetaxel-induced senescence and efficacy were higher in PTEN null tumours when the percentage of tumour-infiltrating CD11b(+)Gr-1(+) myeloid cells was reduced using an antagonist of CXC chemokine receptor 2 (CXCR2). Taken together, our findings identify a novel non-cell-autonomous network, established by innate immunity, that controls senescence evasion and chemoresistance. Targeting this network provides novel opportunities for cancer therapy.


Asunto(s)
Movimiento Celular , Senescencia Celular , Células Mieloides/citología , Células Mieloides/metabolismo , Neoplasias de la Próstata/patología , Receptores de Quimiocina/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Docetaxel , Resistencia a Antineoplásicos , Humanos , Inmunidad Innata , Proteína Antagonista del Receptor de Interleucina 1/deficiencia , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Interleucina-1alfa/inmunología , Interleucina-1alfa/metabolismo , Masculino , Ratones , Células Mieloides/trasplante , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Receptores de Interleucina-8B/antagonistas & inhibidores , Taxoides/farmacología , Escape del Tumor , Microambiente Tumoral
8.
Nature ; 460(7259): 1136-9, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19668188

RESUMEN

The mechanisms involved in the reprogramming of differentiated cells into induced pluripotent stem (iPS) cells by the three transcription factors Oct4 (also known as Pou5f1), Klf4 and Sox2 remain poorly understood. The Ink4/Arf locus comprises the Cdkn2a-Cdkn2b genes encoding three potent tumour suppressors, namely p16(Ink4a), p19(Arf) and p15(Ink4b), which are basally expressed in differentiated cells and upregulated by aberrant mitogenic signals. Here we show that the locus is completely silenced in iPS cells, as well as in embryonic stem (ES) cells, acquiring the epigenetic marks of a bivalent chromatin domain, and retaining the ability to be reactivated after differentiation. Cell culture conditions during reprogramming enhance the expression of the Ink4/Arf locus, further highlighting the importance of silencing the locus to allow proliferation and reprogramming. Indeed, the three factors together repress the Ink4/Arf locus soon after their expression and concomitant with the appearance of the first molecular markers of 'stemness'. This downregulation also occurs in cells carrying the oncoprotein large-T, which functionally inactivates the pathways regulated by the Ink4/Arf locus, thus indicating that the silencing of the locus is intrinsic to reprogramming and not the result of a selective process. Genetic inhibition of the Ink4/Arf locus has a profound positive effect on the efficiency of iPS cell generation, increasing both the kinetics of reprogramming and the number of emerging iPS cell colonies. In murine cells, Arf, rather than Ink4a, is the main barrier to reprogramming by activation of p53 (encoded by Trp53) and p21 (encoded by Cdkn1a); whereas, in human fibroblasts, INK4a is more important than ARF. Furthermore, organismal ageing upregulates the Ink4/Arf locus and, accordingly, reprogramming is less efficient in cells from old organisms, but this defect can be rescued by inhibiting the locus with a short hairpin RNA. All together, we conclude that the silencing of Ink4/Arf locus is rate-limiting for reprogramming, and its transient inhibition may significantly improve the generation of iPS cells.


Asunto(s)
Reprogramación Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Envejecimiento/fisiología , Animales , Recuento de Células , Diferenciación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Células Madre Embrionarias/citología , Epigénesis Genética , Fibroblastos/citología , Fibroblastos/metabolismo , Silenciador del Gen , Humanos , Queratinocitos , Cinética , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos C57BL
9.
Nat Rev Cancer ; 6(6): 472-6, 2006 06.
Artículo en Inglés | MEDLINE | ID: mdl-16723993

RESUMEN

Recently, it has been shown that oncogene-induced senescence (OIS) occurs during the early stages of tumorigenesis. Senescent tumour cells are abundant within premalignant neoplastic lesions, whereas they are scarce in malignant tumours. This association of senescence with the premalignant stages of tumour progression opens the possibility of using senescence markers as diagnostic and prognostic tools. Moreover, some chemotherapeutic protocols induce senescence in tumour cells and, consequently, senescence markers could help to monitor treatment response.


Asunto(s)
Biomarcadores de Tumor , Senescencia Celular , Neoplasias/diagnóstico , Neoplasias/genética , Oncogenes , Animales , Caspasas/metabolismo , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Biológicos
11.
FEBS J ; 290(5): 1203-1211, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35904466

RESUMEN

Cellular senescence, an evolutionarily conserved mechanism that prevents the proliferation of damaged cells, is a very relevant cellular response involved in both physiological and pathological conditions. Even though senescent cells are stably growth arrested, they exhibit a complex and poorly understood secretory phenotype, known as senescence-associated secretory phenotype, composed of soluble proteins and extracellular vesicles (EVs). Extracellular vesicles were initially described as a waste management mechanism to remove damaged components of cellular metabolism, but increasing evidence shows that EVs could also play important roles in intercellular communication. Recently, some studies showed that EVs could have fundamental functions during cellular senescence. Our purpose in this review is to clarify the increasing literature on the role of EVs in cellular senescence as key mediators in cell-to-cell communication.


Asunto(s)
Senescencia Celular , Vesículas Extracelulares , Senescencia Celular/genética , Vesículas Extracelulares/metabolismo , Comunicación Celular , Fenotipo , Transporte Biológico
12.
Animals (Basel) ; 13(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37465861

RESUMEN

Dirofilariosis is a vector-borne zoonotic disease whose distribution is linked to the presence of culicid mosquitoes. Spain and Portugal are considered endemic countries; however, the distribution of dirofilariosis is not uniform. Our aim was to develop a more accurate risk model of dirofilariosis transmission for the Iberian Peninsula (Spain and Portugal) and the Balearic Islands (Spain). To do this, we used a set of key variables related to parasite transmission: the potential distribution of suitable habitats for Culex pipiens calculated via an ecological niche model (ENM) and the potential number of Dirofilaria spp. generations. The resulting model was validated with the prevalence and geolocation of D. immitis-infected dogs from all provinces and districts. In addition, the impact of possible future climatic conditions was estimated. A quantitative estimate of the risk of infection by Dirofilaria spp. was obtained at a resolution of 1 km2. The entire analyzed territory was susceptible to contact with the parasite. The highest risk of infection was found throughout the eastern coastal strip and the south of the Iberian Peninsula and the Balearic Islands, as well as in the areas surrounding the basins of the main rivers, and the lowest risk was located in the higher-altitude areas. We found a robust and positive relationship between the risk of dirofilariosis and the observed prevalence of infested dogs in the study area (ß ± SE = 3.32 ± 1.43 p < 0.05). In 2080, the percentage of territory gain for Cx. pipiens will increase to 49.98%, which will increase the risk of infection. This new model provides a high predictive value for the current and predicted presence and risk and can serve as a tool for the management and control of dirofilariosis.

13.
EMBO J ; 27(16): 2181-93, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18650932

RESUMEN

The atypical PKC-interacting protein, Par-4, inhibits cell survival and tumorigenesis in vitro, and its genetic inactivation in mice leads to reduced lifespan, enhanced benign tumour development and low-frequency carcinogenesis. Here, we demonstrate that Par-4 is highly expressed in normal lung but reduced in human lung cancer samples. We show, in a mouse model of lung tumours, that the lack of Par-4 dramatically enhances Ras-induced lung carcinoma formation in vivo, acting as a negative regulator of Akt activation. We also demonstrate in cell culture, in vivo, and in biochemical experiments that Akt regulation by Par-4 is mediated by PKCzeta, establishing a new paradigm for Akt regulation and, likely, for Ras-induced lung carcinogenesis, wherein Par-4 is a novel tumour suppressor.


Asunto(s)
Neoplasias Pulmonares/enzimología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Trombina/metabolismo , Animales , Línea Celular , Núcleo Celular/enzimología , Activación Enzimática , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/enzimología , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Fosforilación , Unión Proteica , Proteína Quinasa C/metabolismo , Receptores de Trombina/deficiencia , Receptores de Trombina/genética , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X
14.
Proc Natl Acad Sci U S A ; 106(31): 12962-7, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19470463

RESUMEN

Prostate cancer is one of the most common neoplasias in men. The tumor suppressor Par-4 is an important negative regulator of the canonical NF-kappaB pathway and is highly expressed in prostate. Here we show that Par-4 expression is lost in a high percentage of human prostate carcinomas, and this occurs in association with phosphatase and tensin homolog deleted from chromosome 10 (PTEN) loss. Par-4 null mice, similar to PTEN-heterozygous mice, only develop benign prostate lesions, but, importantly, concomitant Par-4 ablation and PTEN-heterozygosity lead to invasive prostate carcinoma in mice. This strong tumorigenic cooperation is anticipated in the preneoplastic prostate epithelium by an additive increase in Akt activation and a synergistic stimulation of NF-kappaB. These results establish the cooperation between Par-4 and PTEN as relevant for the development of prostate cancer and implicate the NF-kappaB pathway as a critical event in prostate tumorigenesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , FN-kappa B/metabolismo , Fosfohidrolasa PTEN/fisiología , Neoplasias de la Próstata/patología , Adenocarcinoma/patología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Humanos , Masculino , Ratones , Mutación , Invasividad Neoplásica , Fosfohidrolasa PTEN/genética , Proteína Quinasa C/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo
15.
Cancers (Basel) ; 14(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35205666

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers mainly due to spatial obstacles to complete resection, early metastasis and therapy resistance. The molecular events accompanying PDAC progression remain poorly understood. SOX9 is required for maintaining the pancreatic ductal identity and it is involved in the initiation of pancreatic cancer. In addition, SOX9 is a transcription factor linked to stem cell activity and is commonly overexpressed in solid cancers. It cooperates with Snail/Slug to induce epithelial-mesenchymal transition (EMT) during neural development and in diseases such as organ fibrosis or different types of cancer. METHODS: We investigated the roles of SOX9 in pancreatic tumor cell plasticity, metastatic dissemination and chemoresistance using pancreatic cancer cell lines as well as mouse embryo fibroblasts. In addition, we characterized the clinical relevance of SOX9 in pancreatic cancer using human biopsies. RESULTS: Gain- and loss-of-function of SOX9 in PDAC cells revealed that high levels of SOX9 increased migration and invasion, and promoted EMT and metastatic dissemination, whilst SOX9 silencing resulted in metastasis inhibition, along with a phenotypic reversion to epithelial features and loss of stemness potential. In both contexts, EMT factors were not altered. Moreover, high levels of SOX9 promoted resistance to gemcitabine. In contrast, overexpression of SOX9 was sufficient to promote metastatic potential in K-Ras transformed MEFs, triggering EMT associated with Snail/Slug activity. In clinical samples, SOX9 expression was analyzed in 198 PDAC cases by immunohistochemistry and in 53 patient derived xenografts (PDXs). SOX9 was overexpressed in primary adenocarcinomas and particularly in metastases. Notably, SOX9 expression correlated with high vimentin and low E-cadherin expression. CONCLUSIONS: Our results indicate that SOX9 facilitates PDAC progression and metastasis by triggering stemness and EMT.

16.
Nature ; 436(7051): 642, 2005 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16079833

RESUMEN

Oncogene-induced senescence is a cellular response that may be crucial for protection against cancer development, but its investigation has so far been restricted to cultured cells that have been manipulated to overexpress an oncogene. Here we analyse tumours initiated by an endogenous oncogene, ras, and show that senescent cells exist in premalignant tumours but not in malignant ones. Senescence is therefore a defining feature of premalignant tumours that could prove valuable in the diagnosis and prognosis of cancer.


Asunto(s)
Senescencia Celular , Neoplasias Pulmonares/patología , Lesiones Precancerosas/patología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Alelos , Animales , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Genes ras/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
17.
Cancer Cell ; 39(1): 13-15, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33357453

RESUMEN

Cellular senescence is a response with two faces in cancer: it restricts tumor proliferation, but it can also promote cancer progression and metastasis. In this issue of Cancer Cell, Guccini et al. uncover the role of TIMP1 in prostate cancer allowing a switch from tumor-controlling to tumor-promoting senescence.


Asunto(s)
Neoplasias de la Próstata , Senescencia Celular/genética , Humanos , Masculino , Neoplasias de la Próstata/genética , Inhibidor Tisular de Metaloproteinasa-1
18.
Cancers (Basel) ; 13(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800796

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers in western countries. Its mortality rate varies greatly, depending on the stage of the disease. The main cause of CRC mortality is metastasis, which most commonly affects the liver. The role of tumor microenvironment in tumor initiation, progression and metastasis development has been widely studied. In this review we summarize the role of the tumor microenvironment in the liver pre-metastatic niche formation, paying attention to the distant cellular crosstalk mediated by exosomes. Moreover, and based on the prognostic and predictive capacity of alterations in the stromal compartment of tumors, we describe the role of tumor microenvironment cells and related liquid biopsy biomarkers in the delivery of precise medication for metastatic CRC. Finally, we evaluate the different clinical strategies to prevent and treat liver metastatic disease, based on the targeting of the tumor microenvironment. Specifically, targeting angiogenesis pathways and regulating immune response are two important research pipelines that are being widely developed and promise great benefits.

19.
Mech Ageing Dev ; 198: 111528, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34181964

RESUMEN

The capacity to regenerate damaged or lost tissue varies widely along the animal kingdom and generally declines with aging of the organism. The gradual accumulation of senescent cells in tissues during aging has been causally involved in their reduced function at old age, and to be at the basis of age-related diseases. Recently, however, cellular senescence has been shown to play a positive role as a morphogenetic force modelling and promoting tissue development during embryogenesis, and to be responsible for tissue wound healing and repair. Work done on organismal models ranging from fish and amphibians, with extraordinary regenerative capacities, to mammals, with a more restricted regenerative potential, is shedding light on a novel and unexpected function of cellular senescence. In this review, we will analyze the senescence phenotype and how could it be contributing or restricting tissue regeneration.


Asunto(s)
Envejecimiento/fisiología , Senescencia Celular/fisiología , Desarrollo Embrionario/fisiología , Regeneración/fisiología , Fenotipo Secretor Asociado a la Senescencia , Animales , Humanos , Modelos Biológicos
20.
Cancers (Basel) ; 13(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771709

RESUMEN

Radiomics is a developing new discipline that analyzes conventional medical images to extract quantifiable data that can be mined for new biomarkers that show the biology of pathological processes at microscopic levels. These data can be converted into image-based signatures to improve diagnostic, prognostic and predictive accuracy in cancer patients. The combination of radiomics and molecular data, called radiogenomics, has clear implications for cancer patients' management. Though some studies have focused on radiogenomics signatures in hepatocellular carcinoma patients, only a few have examined colorectal cancer metastatic lesions in the liver. Moreover, the need to differentiate between liver lesions is fundamental for accurate diagnosis and treatment. In this review, we summarize the knowledge gained from radiomics and radiogenomics studies in hepatic metastatic colorectal cancer patients and their use in early diagnosis, response assessment and treatment decisions. We also investigate their value as possible prognostic biomarkers. In addition, the great potential of image mining to provide a comprehensive view of liver niche formation is examined thoroughly. Finally, new challenges and current limitations for the early detection of the liver premetastatic niche, based on radiomics and radiogenomics, are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA