Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Ann Surg Oncol ; 31(7): 4189-4196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38652200

RESUMEN

BACKGROUND: Radio-guided surgery (RGS) holds promise for improving surgical outcomes in neuroendocrine tumors (NETs). Previous studies showed low specificity (SP) using γ-probes to detect radiation emitted by radio-labeled somatostatin analogs. OBJECTIVE: We aimed to assess the sensitivity (SE) and SP of the intraoperative RGS approach using a ß-probe with a per-lesion analysis, while assessing safety and feasibility as secondary objectives. METHODS: This prospective, single-arm, single-center, phase II trial (NCT05448157) enrolled 20 patients diagnosed with small intestine NETs (SI-NETs) with positive lesions detected at 68Ga-DOTA-TOC positron emission tomography/computed tomography (PET/CT). Patients received an intravenous injection of 1.1 MBq/Kg of 68Ga-DOTA-TOC 10 min prior to surgery. In vivo measurements were conducted using a ß-probe. Receiver operating characteristic (ROC) analysis was performed, with the tumor-to-background ratio (TBR) as the independent variable and pathology result (cancer vs. non-cancer) as the dependent variable. The area under the curve (AUC), optimal TBR, and absorbed dose for the surgery staff were reported. RESULTS: The intraoperative RGS approach was feasible in all cases without adverse effects. Of 134 specimens, the AUC was 0.928, with a TBR cut-off of 1.35 yielding 89.3% SE and 86.4% SP. The median absorbed dose for the surgery staff was 30 µSv (range 12-41 µSv). CONCLUSION: This study reports optimal accuracy in detecting lesions of SI-NETs using the intraoperative RGS approach with a novel ß-probe. The method was found to be safe, feasible, and easily reproducible in daily clinical practice, with minimal radiation exposure for the staff. RGS might potentially improve radical resection rates in SI-NETs. CLINICAL TRIALS REGISTRATION: 68Ga-DOTATOC Radio-Guided Surgery with ß-Probe in GEP-NET (RGS GEP-NET) [NCT0544815; https://classic. CLINICALTRIALS: gov/ct2/show/NCT05448157 ].


Asunto(s)
Neoplasias Intestinales , Intestino Delgado , Tumores Neuroendocrinos , Octreótido , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Cirugía Asistida por Computador , Humanos , Tumores Neuroendocrinos/cirugía , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/diagnóstico por imagen , Femenino , Masculino , Estudios Prospectivos , Persona de Mediana Edad , Neoplasias Intestinales/cirugía , Neoplasias Intestinales/patología , Neoplasias Intestinales/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Anciano , Intestino Delgado/patología , Intestino Delgado/diagnóstico por imagen , Intestino Delgado/cirugía , Octreótido/análogos & derivados , Adulto , Cirugía Asistida por Computador/métodos , Compuestos Organometálicos , Somatostatina/análogos & derivados , Estudios de Seguimiento , Pronóstico , Partículas beta/uso terapéutico , Estudios de Factibilidad
2.
Artículo en Inglés | MEDLINE | ID: mdl-38376805

RESUMEN

PURPOSE: In radioguided surgery (RGS), radiopharmaceuticals are used to generate preoperative roadmaps (e.g., PET/CT) and to facilitate intraoperative tracing of tracer avid lesions. Within RGS, there is a push toward the use of receptor-targeted radiopharmaceuticals, a trend that also has to align with the surgical move toward minimal invasive robotic surgery. Building on our initial ex vivo evaluation, this study investigates the clinical translation of a DROP-IN ß probe in robotic PSMA-guided prostate cancer surgery. METHODS: A clinical-grade DROP-IN ß probe was developed to support the detection of PET radioisotopes (e.g., 68 Ga). The prototype was evaluated in 7 primary prostate cancer patients, having at least 1 lymph node metastases visible on PSMA-PET. Patients were scheduled for radical prostatectomy combined with extended pelvic lymph node dissection. At the beginning of surgery, patients were injected with 1.1 MBq/kg of [68Ga]Ga-PSMA. The ß probe was used to trace PSMA-expressing lymph nodes in vivo. To support intraoperative decision-making, a statistical software algorithm was defined and optimized on this dataset to help the surgeon discriminate between probe signals coming from tumors and healthy tissue. RESULTS: The DROP-IN ß probe helped provide the surgeon with autonomous and highly maneuverable tracer detection. A total of 66 samples (i.e., lymph node specimens) were analyzed in vivo, of which 31 (47%) were found to be malignant. After optimization of the signal cutoff algorithm, we found a probe detection rate of 78% of the PSMA-PET-positive samples, a sensitivity of 76%, and a specificity of 93%, as compared to pathologic evaluation. CONCLUSION: This study shows the first-in-human use of a DROP-IN ß probe, supporting the integration of ß radio guidance and robotic surgery. The achieved competitive sensitivity and specificity help open the world of robotic RGS to a whole new range of radiopharmaceuticals.

3.
Q J Nucl Med Mol Imaging ; 65(3): 229-243, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34014062

RESUMEN

In locally or locally advanced solid tumors, surgery still remains a fundamental treatment method. However, conservative resection is associated with high collateral damage and functional limitations of the patient. Furthermore, the presence of residual tumor tissue following conservative surgical treatment is currently a common cause of locally recurrent cancer or of distant metastases. Reliable intraoperative detection of small cancerous tissue would allow surgeons to selectively resect malignant areas: this task can be achieved by means of image-guided surgery, such as beta radioguided surgery (RGS). In this paper, a comprehensive review of beta RGS is given, starting from the physical principles that differentiate beta from gamma radiation, that already has its place in current surgical practice. Also, the recent clinical feasibility of using Cerenkov radiation is discussed. Despite being first proposed several decades ago, only in the last years a remarkable interest in beta RGS has been observed, probably driven by the diffusion of PET radiotracers. Today several different approaches are being pursued to assess the effectiveness of such a technique, including both beta+ and beta- emitting radiopharmaceuticals. Beta RGS shows some peculiarities that can present it as a very promising complementary technique to standard procedures. Good results are being obtained in several tests, both ex vivo and in vivo. This might however be the time to initiate the trials to demonstrate the real clinical value of these technologies with seemingly clear potential.


Asunto(s)
Recurrencia Local de Neoplasia , Cirugía Asistida por Computador , Humanos , Radiofármacos
6.
Phys Med ; 113: 102658, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37603908

RESUMEN

PURPOSE: Radioguided surgery (RGS) is a technique that helps the surgeon to achieve a tumour resection as complete as possible, by means of the intraoperative detection of particles emitted by a radiotracer that bounds to tumoural cells. This study aimed to investigate the applicability of ß-RGS for tumour resection and margin assessment in cervical cancer patients preoperatively injected with [18F]FDG, by means of Monte Carlo simulations. METHODS: Patients were retrospectively included if they had a recurrent or persistent cervical cancer, underwent preoperative PET/CT to exclude distant metastases and received radical surgery. All PET/CT images were analysed extracting tumour SUVmax, background SUVmean and tumour-to-non-tumour ratio. These values were used to obtain the expected count rate in a realistic surgical scenario by means of a Monte Carlo simulation of the ß probe, assuming the injection of 2 MBq/kg of [18F]FDG 60 min before surgery. RESULTS: Thirty-eight patients were included. A measuring time of ∼2-3 s is expected to be sufficient for discriminating the tumour from background in a given lesion, being this the time the probe has to be over the sample in order to be able to discriminate tumour from healthy tissue with a sensitivity of ∼99% and a specificity of at least 95%. CONCLUSION: This study presents the first step towards a possible application of our ß-RGS technique in cervical cancer. Results suggest that this approach to ß-RGS could help surgeons distinguish tumour margins from surrounding healthy tissue, even in a setting of high radiotracer background activity.


Asunto(s)
Cirugía Asistida por Computador , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/cirugía , Estudios de Factibilidad , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos
7.
Curr Radiopharm ; 15(1): 32-39, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33397277

RESUMEN

BACKGROUND: Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody, nowadays used for tumour immunochemotherapy. This study aimed to label the conjugate DOTA-nimotuzumab with yttrium-90, in order to provide a ß- emitting radioimmunoconjugate (90Y-DOTA-nimotuzumab) potentially useful to assess the feasibility of a new radio-guided surgery approach. METHODS: The synthesis of 90Y-DOTA-nimotuzumab was performed in two days. Nimotuzumab was conjugated with a 50-fold excess of DOTA and then labelled with 90Y3+. The 90Y-DOTA-nimotuzumab preparation was optimized considering several parameters such as pH, temperature and reaction volume. Moreover, the 90Y-DOTA-nimotuzumab stability was evaluated in human plasma. RESULTS: The radioimmunoconjugate 90Y-DOTA-nimotuzumab was obtained with a radiochemical purity greater than 96%, and showed a good stability at 20°C as well as at 37°C in human plasma. CONCLUSIONS: The optimized conditions for a mild and easy preparation of 90Y-DOTA-nimotuzumab joined to a promising stability under physiological conditions suggest to propose this radioimmunoconjugate as a potential diagnostic radiopharmaceutical for ß- radio-guided surgery.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados , Compuestos Heterocíclicos , Humanos , Inmunoconjugados/farmacología , Compuestos Organometálicos , Radiofármacos/farmacología , Radioisótopos de Itrio/uso terapéutico
8.
Med Phys ; 48(12): 8117-8126, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34704618

RESUMEN

PURPOSE: A high level of personalization in Molecular Radiotherapy (MRT) could bring advantages in terms of treatment effectiveness and toxicity reduction. Individual organ-level dosimetry is crucial to describe the radiopharmaceutical biodistribution expressed by the patient, to estimate absorbed doses to normal organs and target tissue(s). This paper presents a proof-of-concept Monte Carlo simulation study of "WIDMApp" (Wearable Individual Dose Monitoring Apparatus), a multi-channel radiation detector and data processing system for in vivo patient measurement and collection of radiopharmaceutical biokinetic data (i.e., time-activity data). Potentially, such a system can increase the amount of such data that can be collected while reducing the need to derive it via nuclear medicine imaging. METHODS: a male anthropomorphic MIRD phantom was used to simulate photons (i.e., gamma-rays) propagation in a patient undergoing a 131 I thyroid treatment. The administered activity was set to the amount usually administered for the treatment of differentiated carcinoma while its initial distribution in different organs was assigned following the ICRP indications for the 131 I biokinetics. Using this information, the simulation computes the Time-dependent Counts Curves (TCCs) that would have been measured by seven WIDMApp-like sensors placed and oriented to face each one of five emitting organs plus two thyroid lobes. A deconvolution algorithm was then applied on this simulated data set to reconstruct the Time-Activity Curve (TAC) of each organ. Deviations of the reconstructed TACs parameters from values used to generate them were studied as a function of the deconvolution algorithm initialization parameters and assuming non-Poisson fluctuation of the TCCs data points. RESULTS: This study demonstrates that it is possible, at least in the simple simulated scenario, to reconstruct the organ cumulated activity by measuring the time dependence of counts recorded by several detectors placed at selected positions on the patient's body. The ability to perform in vivo sampling more frequently than conventional biokinetic studies increases the number of time points and therefore the accuracy in TAC estimates. In this study, an accuracy on cumulated activity of 5% is obtained even with a 20% error on the TCC data points and a 50% error on the initial guess on the parameters of the deconvolution algorithm. CONCLUSIONS: the WIDMApp approach could provide an effective tool to characterize more accurately the radiopharmaceutical biokinetics in MRT patients, reducing the need of resources of nuclear medicine departments, such as technologist and scanner time, to perform individualized biokinetics studies. The relatively simple hardware for the approach proposed would allow its application to large numbers of patients. The results obtained justify development of an actual prototype system to characterize this technique under realistic conditions.


Asunto(s)
Radiofármacos , Dispositivos Electrónicos Vestibles , Humanos , Masculino , Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación , Radiometría , Distribución Tisular
9.
Int J Thermophys ; 42(12): 163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744236

RESUMEN

A future multi-TeV muon collider requires new ideas to tackle the problems of muon production, accumulation and acceleration. In the Low EMittance Muon Accelerator concept a 45 GeV positron beam, stored in an accumulation ring with high energy acceptance and low angular divergence, is extracted and driven to a target system in order to produce muon pairs near the kinematic threshold. However, this scheme requires an intensity of the impinging positron beam so high that the energy dissipation and the target maintenance are crucial aspects to be investigated. Both peak temperature rises and thermomechanical shocks are related to the beam spot size at the target for a given material: these aspects are setting a lower bound on the beam spot size itself. The purpose of this paper is to provide a fully theoretical approach to predict the temperature increase, the thermal gradients, and the induced thermomechanical stress on targets, generated by a sequence of 45 GeV positron bunches. A case study is here presented for Beryllium and Graphite targets. We first discuss the Monte Carlo simulations to evaluate the heat deposited on the targets after a single bunch of 3 × 1011 positrons for different beam sizes. Then a theoretical model is developed to simulate the temperature increase of the targets subjected to very fast sequences of positron pulses, over different timescales, from ps regime to hundreds of seconds. Finally a simple approach is provided to estimate the induced thermomechanical stresses in the target, together with simple criteria to be fulfilled (i.e., Christensen safety factor) to prevent the crack formation mechanism.

10.
Cancer Biother Radiopharm ; 36(5): 397-406, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33601932

RESUMEN

Background: In neuroendocrine tumor (NET), complete surgery could better the prognosis. Radioguided surgery (RGS) with ß--radioisotopes is a novel approach focused on developing a new probe that, detecting electrons and operating with low background, provides a clearer delineation of the lesions with low radiation exposition for surgeons. As a first step to validate this procedure, ex vivo specimens of tumors expressing somatostatin receptors, as small intestine neuroendocrine tumor (SI-NET), were tested. Materials and Methods: SI-NET presents a high uptake of a beta-emitting radiotracer, 90Y-DOTATOC. Five SI-NET patients were enrolled after performing a 68Ga-DOTATOC positron emission tomography/computed tomography (CT) and a CT enterography; 24 h before surgery, they received 5 mCi of 90Y-DOTATOC. Results: Surgery was performed as routine. Tumors and surrounding tissue were sectioned in different samples and examined ex vivo with the beta-detecting probe. All the tumor samples showed high counts of radioactivity that was up to a factor of 18 times higher than the corresponding cutoff value, with a sensitivity of 96% and a specificity of 100%. Conclusions: These first ex vivo RGS tests showed that this probe can discriminate very effectively between tumor and healthy tissues by the administration of low activities of 90Y-DOTATOC, allowing more precise surgery.


Asunto(s)
Neoplasias Intestinales/cirugía , Tumores Neuroendocrinos/cirugía , Octreótido/análogos & derivados , Anciano , Partículas beta , Femenino , Humanos , Neoplasias Intestinales/diagnóstico por imagen , Neoplasias Intestinales/patología , Intestino Delgado , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/patología , Compuestos Organometálicos , Proyectos Piloto , Tomografía Computarizada por Tomografía de Emisión de Positrones , Receptores de Somatostatina , Sensibilidad y Especificidad , Radioisótopos de Itrio
11.
Sci Rep ; 10(1): 4015, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132632

RESUMEN

The possibility to use ß- decaying isotopes for radioguided surgery (RGS) has been recently proposed, and first promising tests on ex-vivo samples of Meningioma and intestinal Neuroendocrine Tumor (NET) have been published. This paper reports a study of the uptake of 68Ga-DOTATOC in pancreatic NETs (pNETs) in order to assess the feasibility of a new RGS approach using 90Y-DOTATOC. Tumor and healthy pancreas uptakes were estimated from 68Ga-DOTATOC PET/CT scans of 30 patients with pNETs. From the obtained SUVs (Standardised Uptake Value) and TNRs (Tumor Non tumor Ratio), an analysis algorithm relying on a Monte Carlo simulation of the detector has been applied to evaluate the performances of the proposed technique. Almost all considered patients resulted to be compatible with the application of ß--RGS assuming to administer 1.5 MBq/kg of activity of 90Y-DOTATOC 24 h before surgery, and a sampling time of few seconds. In just 2 cases the technique would have required a mildly increased amount of activity or of sampling time. Despite a high physiological uptake of 68Ga-DOTATOC in the healthy pancreas, the proposed RGS technique promises to be effective. This approach allows RGS to find application also in pancreatic diseases, where traditional techniques are not viable.


Asunto(s)
Algoritmos , Neoplasias Intestinales , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias Gástricas , Cirugía Asistida por Computador , Anciano , Partículas beta , Femenino , Humanos , Neoplasias Intestinales/diagnóstico por imagen , Neoplasias Intestinales/terapia , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/terapia , Octreótido/administración & dosificación , Octreótido/análogos & derivados , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/terapia , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/terapia
12.
EJNMMI Res ; 10(1): 92, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32761408

RESUMEN

BACKGROUND: Recently, a flexible DROP-IN gamma-probe was introduced for robot-assisted radioguided surgery, using traditional low-energy SPECT-isotopes. In parallel, a novel approach to achieve sensitive radioguidance using beta-emitting PET isotopes has been proposed. Integration of these two concepts would allow to exploit the use of PET tracers during robot-assisted tumor-receptor-targeted. In this study, we have engineered and validated the performance of a novel DROP-IN beta particle (DROP-INß) detector. METHODS: Seven prostate cancer patients with PSMA-PET positive tumors received an additional intraoperative injection of ~ 70 MBq 68Ga-PSMA-11, followed by robot-assisted prostatectomy and extended pelvic lymph node dissection. The surgical specimens from these procedures were used to validate the performance of our DROP-INß probe prototype, which merged a scintillating detector with a housing optimized for a 12-mm trocar and prograsp instruments. RESULTS: After optimization of the detector and probe housing via Monte Carlo simulations, the resulting DROP-INß probe prototype was tested in a robotic setting. In the ex vivo setting, the probe-positioned by the robot-was able to identify 68Ga-PSMA-11 containing hot-spots in the surgical specimens: signal-to-background (S/B) was > 5 when pathology confirmed that the tumor was located < 1 mm below the specimen surface. 68Ga-PSMA-11 containing (and PET positive) lymph nodes, as found in two patients, were also confirmed with the DROP-INß probe (S/B > 3). The rotational freedom of the DROP-IN design and the ability to manipulate the probe with the prograsp tool allowed the surgeon to perform autonomous beta-tracing. CONCLUSIONS: This study demonstrates the feasibility of beta-radioguided surgery in a robotic context by means of a DROP-INß detector. When translated to an in vivo setting in the future, this technique could provide a valuable tool in detecting tumor remnants on the prostate surface and in confirmation of PSMA-PET positive lymph nodes.

13.
Sci Rep ; 8(1): 16171, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385885

RESUMEN

Radio Guided Surgery is a technique helping the surgeon in the resection of tumors: a radiolabeled tracer is administered to the patient before surgery and then the surgeon evaluates the completeness of the resection with a handheld detector sensitive to emitted radiation. Established methods rely on γ emitting tracers coupled with γ detecting probes. The efficacy of this technique is however hindered by the high penetration of γ radiation, limiting its applicability to low background conditions. To overtake such limitations, a novel approach to RGS has been proposed, relying on ß- emitting isotopes together with a dedicated ß probe. This technique has been proved to be effective in first ex-vivo trials. We discuss in this paper the possibility to extend its application cases to 68Ga, a ß+ emitting isotope widely used today in nuclear medicine. To this aim, a retrospective study on 45 prostatic cancer patients was performed, analysing their 68Ga-PSMA PET images to asses if the molecule uptake is enough to apply this technique. Despite the expected variability both in terms of SUV (median 4.1, IQR 3.0-6.1) and TNR (median 9.4, IQR 5.2-14.6), the majority of cases have been found to be compatible with ß-RGS with reasonable injected activity and probing time (5 s).


Asunto(s)
Partículas beta/uso terapéutico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Cirugía Asistida por Computador , Ácido Edético/administración & dosificación , Ácido Edético/análogos & derivados , Isótopos de Galio , Radioisótopos de Galio , Humanos , Masculino , Oligopéptidos/administración & dosificación , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/patología , Radiofármacos/administración & dosificación
14.
J Pharm Biomed Anal ; 156: 8-15, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29704772

RESUMEN

The aim of the present work has been the mass spectrometry characterization of the Nimotuzumab (NIM) antibody chemically modified with the bifunctional chelating agent para-S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraaza cyclododecanetetraacetic acid (p-SCN-Bn-DOTA). The conjugate, upon labeling with the pure ß--emitter 90Y3+, could represent a promising candidate as radiotracer for an innovative radio-guided surgery (RGS) technique, developed and patented by researchers of our group, which uses a probe system for intraoperative detection of tumor residues exploiting the selective uptake of ß--emitting tracers. The results reported in this study show that multiple DOTA molecules bind to lysine residues of both light and heavy chains of the antibody and, probably, some of them are linked to the variable region of antibody. Moreover, the new mass spectrometric analysis highlights the presence of unreacted NIM in the final product. The information obtained by this work is of fundamental importance in the perspective to utilize this conjugate as a radiocompound after its labeling with 90Y3+ radioisotope. Indeed, the conjugation efficiency and the presence of unreacted NIM affect the specific activity of the final radiotracer which binds specific receptor.


Asunto(s)
Anticuerpos Monoclonales Humanizados/análisis , Quelantes/química , Compuestos Heterocíclicos/química , Inmunoconjugados/análisis , Isotiocianatos/química , Cirugía Asistida por Computador/métodos , Anticuerpos Monoclonales Humanizados/química , Inmunoconjugados/química , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Trazadores Radiactivos , Radioisótopos de Itrio
15.
Phys Med ; 43: 127-133, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29195555

RESUMEN

PURPOSE: Beta-particle radioguided tumor resection may potentially overcome the limitations of conventional gamma-ray guided surgery by eliminating, or at least minimizing, the confounding effect of counts contributed by activity in adjacent normal tissues. The current study evaluates the clinical feasibility of this approach for a variety of radionuclides. Nowadays, the only ß- radioisotope suited to radioguided surgery is 90Y. Here, we study the ß- probe prototype capability to different radionuclides chosen among those used in nuclear medicine. METHODS: The counting efficiency of our probe prototype was evaluated for sources of electrons and photons of different energies. Such measurements were used to benchmark the Monte Carlo (MC) simulation of the probe behavior, especially the parameters related to the simulation of the optical photon propagation in the scintillation crystal. Then, the MC simulation was used to derive the signal and the background we would measure from a small tumor embedded in the patient body if one of the selected radionuclides is used. RESULTS: Based on the criterion of detectability of a 0.1 ml tumor for a counting interval of 1 s and an administered activity of 3 MBq/kg, the current probe yields a detectable signal over a wide range of Standard Uptake Values (SUVs) and tumor-to-non-tumor activity-concentration ratios (TNRs) for 31Si, 32P, 97Zr, and 188Re. Although efficient counting of 83Br, 133I, and 153Sm proved somewhat more problematic, the foregoing criterion can be satisfied for these isotopes as well for sufficiently high SUVs and TNRs.


Asunto(s)
Partículas beta , Cirugía General/métodos , Estudios de Factibilidad , Neoplasias/cirugía , Medicina Nuclear , Radioisótopos , Radiometría
16.
Med Phys ; 44(8): 4276-4286, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28586136

RESUMEN

PURPOSE: The real-time monitoring of the spread-out Bragg peak would allow the planned dose delivered during treatment to be directly verified, but this poses a major challenge in modern ion beam therapy. A possible method to achieve this goal is to exploit the production of secondary particles by the nuclear reactions of the beam with the patient and correlate their emission profile to the planned target volume position. In this study, we present both the production rate and energy spectra of the prompt-γ produced by the interactions of the 12 C ion beam with a polymethyl methacrylate (PMMA) target. We also assess three different Monte Carlo models for prompt-γ simulation based on our experimental data. METHODS: The experiment was carried out at the GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany with a 220 MeV/u 12 C ions beam impinging on a 5× 5× 20 cm3 polymethyl methacrylate beam stopping target, with the prompt-γ being detected by a hexagonally-shaped barium fluoride scintillator with a circumscribed radius of 5.4 cm and a length of 14 cm, placed at 60° and 90° with respect to the beam direction. Monte Carlo simulations were carried out with three different hadronic models from the Geant4 code: binary ion cascade (BIC), quantum molecular dynamics (QMD), and Liege intranuclear cascade (INCL++ ). RESULTS: An experimental prompt-γ yield of 1.06 × 10-2  sr-1 was measured at 90°. A good agreement was observed between the shapes of the experimental and simulated energy spectra, especially with the INCL++ physics list. The prompt-γ yield obtained with this physics list was compatible with the measurement within 2σ, with a relative difference of 26% on average. BIC and QMD physics lists proved to be less accurate than INCL++ , with the difference between the measured and simulated yields exceeding 100%. The differences between the three physics lists were ascribed to important discrepancies between the models of the physical processes producing prompt-γ emissions. CONCLUSION: In conclusion, this study provides prompt-γ yield values in agreement with previously published results for different carbon ions energies. This work demonstrates that the INCL++ physics list from Geant4 is more accurate than BIC and QMD to reproduce prompt-γ emission properties.


Asunto(s)
Benchmarking , Radioterapia de Iones Pesados , Carbono , Humanos , Método de Montecarlo , Fenómenos Físicos , Radiometría
17.
Phys Med ; 34: 18-27, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28111101

RESUMEN

Charged particle therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbon ions. A critical issue is the monitoring of the beam range so to check the correct dose deposition to the tumor and surrounding tissues. The design of a new tracking device for beam range real-time monitoring in pencil beam carbon ion therapy is presented. The proposed device tracks secondary charged particles produced by beam interactions in the patient tissue and exploits the correlation of the charged particle emission profile with the spatial dose deposition and the Bragg peak position. The detector, currently under construction, uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a pixelated Lutetium Fine Silicate (LFS) crystal calorimeter. An algorithm to account and correct for emission profile distortion due to charged secondaries absorption inside the patient tissue is also proposed. Finally detector reconstruction efficiency for charged particle emission profile is evaluated using a Monte Carlo simulation considering a quasi-realistic case of a non-homogenous phantom.


Asunto(s)
Radioterapia de Iones Pesados/instrumentación , Diseño de Equipo , Fantasmas de Imagen , Protones , Dosificación Radioterapéutica , Conteo por Cintilación
18.
Front Oncol ; 6: 177, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27536555

RESUMEN

The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.

19.
J Nucl Med ; 56(10): 1501-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26338895

RESUMEN

UNLABELLED: A novel radioguided surgery (RGS) technique exploiting ß- radiation has been proposed. To develop such a technique, a suitable radiotracer able to deliver a ß- emitter to the tumor has to be identified. A first candidate is represented by 90Y-labeled DOTATOC, a compound commonly used today for peptide radioreceptor therapy. The application of this ß- RGS to neuroendocrine tumors (NET) requires study of the uptake of DOTATOC and its time evolution both in tumors and in healthy organs and evaluation of the corresponding performance of the technique. METHODS: Uptake by lesions and healthy organs (kidneys, spleen, liver and healthy muscle) was estimated on 177Lu-DOTATOC SPECT/CT scans of 15 patients affected by NET with different localizations, treated at IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy. For each patient, SPECT/CT images, acquired at 0.5, 4, 20, 40, and 70 h after injection, were studied. For each lesion, the tumor-to-nontumor ratio (TNR) with respect to all healthy organs and its time evolution were studied. A subset of patients showing hepatic lesions was selected, and the TNR with respect to the nearby healthy tissue was calculated. By means of a Monte Carlo simulation of the probe for ß- RGS, the activity that is to be administered for a successful detection was estimated lesion-by-lesion. RESULTS: Uptake of DOTATOC on NETs maximized at about 24 h after injection. The cases of hepatic lesions showed a TNR with respect to the tumor margins compatible with the application of ß- RGS. In particular, 0.1-mL residuals are expected to be detectable within 1 s with 5% false-negative and 1% false-positive by administering the patient as little as 1 MBq/kg. CONCLUSION: The balance between tumor uptake and metabolic washout in healthy tissue causes the TNR to increase with time, reaching its maximum after 24 h, and this characteristic can be exploited when a radiotracer with a long half-life, such as 90Y, is used. In particular, if 90Y-DOTATOC is used with liver NET metastases, the proposed RGS technique is believed to be feasible by injecting an activity that is one third of that commonly used for PET imaging.


Asunto(s)
Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/cirugía , Octreótido/análogos & derivados , Radiofármacos/farmacocinética , Cirugía Asistida por Computador/métodos , Partículas beta , Semivida , Humanos , Riñón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Octreótido/farmacocinética , Bazo/diagnóstico por imagen , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
20.
J Nucl Med ; 56(1): 3-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25500828

RESUMEN

UNLABELLED: A novel radioguided surgery (RGS) technique for cerebral tumors using ß(-) radiation is being developed. Checking for a radiotracer that can deliver a ß(-) emitter to the tumor is a fundamental step in the deployment of such a technique. This paper reports a study of the uptake of (90)Y-DOTATOC in meningiomas and high-grade gliomas (HGGs) and a feasibility study of the RGS technique in these types of tumor. Estimates were performed assuming the use of a ß(-) probe under development with a sensitive area 2.55 mm in radius to detect 0.1-mL residuals. METHODS: Uptake and background from healthy tissues were estimated on (68)Ga-DOTATOC PET scans of 11 meningioma patients and 12 HGG patients. A dedicated statistical analysis of the DICOM images was developed and validated. The feasibility study was performed using full simulation of emission and detection of the radiation, accounting for the measured uptake and background rate. RESULTS: All meningioma patients but one with an atypical extracranial tumor showed high uptake of DOTATOC. In terms of feasibility of the RGS technique, we estimated that by administering a 3 MBq/kg activity of radiotracer, the time needed to detect a 0.1-mL remnant with 5% false-negative and 1% false-positive rates is less than 1 s. Actually, to achieve a detection time of 1 s the required activities to administer were as low as 0.2-0.5 MBq/kg in many patients. In HGGs, the uptake was lower than in meningiomas, but the tumor-to-nontumor ratio was higher than 4, which implies that the tracer can still be effective for RGS. It was estimated that by administering 3 mBq/kg of radiotracer, the time needed to detect a 0.1-mL remnant is less than 6 s, with the exception of the only oligodendroma in the sample. CONCLUSION: Uptake of (90)Y-DOTATOC in meningiomas was high in all studied patients. Uptake in HGGs was significantly worse than in meningiomas but was still acceptable for RGS, particularly if further research and development are done to improve the performance of the ß(-) probe.


Asunto(s)
Partículas beta , Glioma/cirugía , Neoplasias Meníngeas/cirugía , Meningioma/cirugía , Octreótido/análogos & derivados , Somatostatina/análogos & derivados , Cirugía Asistida por Computador/métodos , Transporte Biológico , Glioma/metabolismo , Glioma/patología , Humanos , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Clasificación del Tumor , Octreótido/química , Octreótido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA