Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(39): 16131-16148, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37721409

RESUMEN

The 2,2'-bipyridyl-6,6'-dicarboxylate ligand (bdc) has been shown in prior work to effectively capture the uranyl(VI) ion, UO22+, from aqueous solutions. However, the redox properties of the uranyl complex of this ligand have not been addressed despite the relevance of uranium-centered reduction to the nuclear fuel cycle and the presence of a bipyridyl core in bdc, a motif long recognized for its ability to support redox chemistry. Here, the bdc complex of UO22+ (1-UO2) has been synthetically prepared and isolated under nonaqueous conditions for the study of its reductive chemical and electrochemical behavior. Spectrochemical titration data collected using decamethylcobaltocene (Cp*2Co) as the reductant demonstrate that 1e- reduction of 1-UO2 is accessible, and companion near-infrared and infrared spectroscopic data, along with theoretical findings from density functional theory, provide evidence that supports the accessibility of the U(V) oxidation state. Data obtained for control ruthenium complexes of bdc and related polypyridyl dicarboxylate ligands provide a counterpoint to these findings; ligand-centered reduction of bdc in these control compounds occurs at potentials more negative than those measured for reduction of 1-UO2, further supporting the generation of uranium(V) in 1-UO2. Taken together, these results underscore the usefulness of bdc as a ligand for actinyl ions and suggest that it could be useful for further studies of the reductive activation of these unique species.

2.
Inorg Chem ; 60(18): 14047-14059, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34455788

RESUMEN

The synthesis of multimetallic compounds can enable the placement of two or more metals in close proximity, but efforts in this area are often hindered by reagent incompatibilities and a lack of selectivity. Here, we show that organometallic half-sandwich [Cp*M] (M = Rh, Ir) fragments (where Cp* is η5-pentamethylcyclopentadienyl) can be cleanly installed into metallomacrocyclic structures based on the workhorse diimine-monooxime-monooximato ligand system. Six new heterobimetallic compounds have been prepared to explore this synthetic chemistry, which relies on in situ protonolysis reactivity with precursor Ni(II) or Co(III) monometallic complexes in the presence of suitable [Cp*M] species. Solid-state X-ray diffraction studies confirm installation of the [Cp*M] fragments into the metallomacrocycles via effective chelation of the Rh(III) and Ir(III) centers by the nascent dioximato site. Contrasting with square-planar Ni(II) centers, the Co(III) centers prefer octahedral geometry in the heterobimetallic compounds, promoting bridging ligation of acetate across the two metals. Spectroscopic and electrochemical studies reveal subtle influences of the metals on each other's properties, consistent with the moderate M'···M distances of ca. 3.6-3.7 Å in the modular compounds. Taken together, our results show that heterobimetallic complexes can be assembled with organometallic [Cp*M] fragments on the diimine-dioximato platform.

3.
Chemistry ; 26(54): 12454-12471, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32449820

RESUMEN

Recently, dual-catalytic strategies towards the decarboxylative elimination of carboxylic acids have gained attention. Our lab previously reported a photoredox/cobaloxime dual catalytic method that allows the synthesis of enamides and enecarbamates directly from N-acyl amino acids and avoids the use of any stoichiometric reagents. Further development, detailed herein, has improved upon this transformation's utility and further experimentation has provided new insights into the reaction mechanism. These new developments and insights are anticipated to aid in the expansion of photoredox/cobalt dual-catalytic systems.

4.
Org Lett ; 23(18): 7008-7013, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34477395

RESUMEN

New methods for C-N bond construction exploiting the N-centered electrophilic character of iminoquinones are reported. Iminoquinones, generated in situ via the condensation of o-vinylanilines with benzoquinones, undergo acid-catalyzed cyclization to afford N-arylindoles in excellent yields. Under similar reaction conditions, homoallylic amines react analogously to afford N-arylpyrroles. Additionally, organometallic nucleophiles are shown to add to the nitrogen atom of N-alkyliminoquinones to provide amine products. Finally, iminoquinones are shown to be competent electrophiles for copper-catalyzed hydroamination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA