Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 183, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285241

RESUMEN

Fibronectin (FN) and collagen are vital components of the extracellular matrix (ECM). These proteins are essential for tissue formation and cell alignment during the wound healing stage. In particular, FN interacts with collagens to activate various intracellular signaling pathways to maintain ECM stability. A novel recombinant extra domain-B fibronectin (EDB-FN)-COL3A1 fusion protein (rhFEB) was designed to mimic the ECM to promote chronic and refractory skin ulcer wound healing. rhFEB significantly enhanced cell adhesion and migration, vascular ring formation, and the production of new collagen I (COL1A1) in vitro. rhFEB decreased M1 macrophages and further modulated the wound microenvironment, which was confirmed by the treatment of db/db mice with rhFEB. Accelerated wound healing was shown during the initial stages in rhFEB-treated db/db mice, as was enhanced follicle regeneration, re-epithelialization, collagen deposition, granulation, inflammation, and angiogenesis. The wound chronicity of diabetic foot ulcers (DFUs) remains the main challenge in current and future treatment. rhFEB may be a candidate molecule for regulating M1 macrophages during DFU healing. KEY POINTS: • A recombinant protein EDB-FN-collagen III (rhFEB) was highly expressed in Escherichia coli • rhFEB protein induces COL1A1 secretion in human skin fibroblasts • rhFEB protein accelerates diabetic wound healing.


Asunto(s)
Fibronectinas , Piel , Humanos , Animales , Ratones , Cicatrización de Heridas , Matriz Extracelular , Escherichia coli/genética , Colágeno
2.
Bioengineering (Basel) ; 11(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38790293

RESUMEN

Atopic dermatitis (AD), a prevalent chronic inflammatory skin disorder, is marked by impaired skin barrier function and persistent pruritus. It significantly deteriorates patients' quality of life, making it one of the most burdensome non-lethal skin disorders. Filaggrin plays a crucial role in the pathophysiology of barrier disruption in AD, interacting with inflammatory mediators. It is an integral part of the extracellular matrix architecture, serving to protect the skin barrier and attenuate the inflammatory cascade. In this study, we engineered a novel recombinant human filaggrin (rhFLA-10) expression vector, which was subsequently synthesized and purified. In vitro and ex vivo efficacy experiments were conducted for AD. rhFLA-10, at low concentrations (5 to 20 µg/mL), was non-toxic to HACaT cells, significantly inhibited the degranulation of P815 mast cells, and was readily absorbed by cells, thereby exerting a soothing therapeutic effect. Furthermore, rhFLA-10 demonstrated anti-inflammatory properties (p < 0.05). In vivo, efficacy experiments further substantiated that rhFLA-10 could effectively ameliorate AD in mice and facilitate the repair of damaged skin (p < 0.001). These findings underscore the considerable potential of rhFLA-10 in the treatment of AD.

3.
Bioengineering (Basel) ; 10(8)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37627811

RESUMEN

Collagen is the functional protein of the skin, tendons, ligaments, cartilage, bone, and connective tissue. Due to its extraordinary properties, collagen has a wide range of applications in biomedicine, tissue engineering, food, and cosmetics. In this study, we designed a functional fragment of human type I collagen (rhLCOL-I) and expressed it in Escherichia coli (E. coli) BL21(DE3) PlysS containing a thermal-induced plasmid, pBV-rhLCOL-I. The results indicated that the optimal expression level of the rhLCOL-I reached 36.3% of the total protein at 42 °C, and expressed in soluble form. In a 7 L fermentation, the yield of purified rhLCOL-I was 1.88 g/L. Interestingly, the plasmid, pBV220-rhLCOL-I, was excellently stable during the fermentation process, even in the absence of antibiotics. Functional analyses indicated that rhLCOL-I had the capacity to promote skin cell migration and adhesion in vitro and in vivo. Taken together, we developed a high-level and low-cost approach to produce collagen fragments suitable for medical applications in E. coli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA