Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genome Res ; 30(9): 1228-1242, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32796005

RESUMEN

Neuroblastoma is a malignancy of the developing sympathetic nervous system that accounts for 12% of childhood cancer deaths. Like many childhood cancers, neuroblastoma shows a relative paucity of somatic single-nucleotide variants (SNVs) and small insertions and deletions (indels) compared to adult cancers. Here, we assessed the contribution of somatic structural variation (SV) in neuroblastoma using a combination of whole-genome sequencing (WGS) of tumor-normal pairs (n = 135) and single-nucleotide polymorphism (SNP) genotyping of primary tumors (n = 914). Our study design allowed for orthogonal validation and replication across platforms. SV frequency, type, and localization varied significantly among high-risk tumors. MYCN nonamplified high-risk tumors harbored an increased SV burden overall, including a significant excess of tandem duplication events across the genome. Genes disrupted by SV breakpoints were enriched in neuronal lineages and associated with phenotypes such as autism spectrum disorder (ASD). The postsynaptic adapter protein-coding gene, SHANK2, located on Chromosome 11q13, was disrupted by SVs in 14% of MYCN nonamplified high-risk tumors based on WGS and 10% in the SNP array cohort. Expression of SHANK2 was low across human-derived neuroblastoma cell lines and high-risk neuroblastoma tumors. Forced expression of SHANK2 in neuroblastoma cells resulted in significant growth inhibition (P = 2.6 × 10-2 to 3.4 × 10-5) and accelerated neuronal differentiation following treatment with all-trans retinoic acid (P = 3.1 × 10-13 to 2.4 × 10-30). These data further define the complex landscape of somatic structural variation in neuroblastoma and suggest that events leading to deregulation of neurodevelopmental processes, such as inactivation of SHANK2, are key mediators of tumorigenesis in this childhood cancer.


Asunto(s)
Genes Supresores de Tumor , Variación Estructural del Genoma , Proteínas del Tejido Nervioso/genética , Neuroblastoma/genética , Neurogénesis/genética , Línea Celular Tumoral , Cromotripsis , Estudios de Cohortes , Roturas del ADN , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Masculino , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/patología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , ARN Neoplásico , RNA-Seq , Medición de Riesgo , Telomerasa/genética , Células Tumorales Cultivadas , Secuenciación Completa del Genoma
2.
PLoS Genet ; 13(5): e1006787, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28545128

RESUMEN

Neuroblastoma is a cancer of the developing sympathetic nervous system that most commonly presents in young children and accounts for approximately 12% of pediatric oncology deaths. Here, we report on a genome-wide association study (GWAS) in a discovery cohort or 2,101 cases and 4,202 controls of European ancestry. We identify two new association signals at 3q25 and 4p16 that replicated robustly in multiple independent cohorts comprising 1,163 cases and 4,396 controls (3q25: rs6441201 combined P = 1.2x10-11, Odds Ratio 1.23, 95% CI:1.16-1.31; 4p16: rs3796727 combined P = 1.26x10-12, Odds Ratio 1.30, 95% CI: 1.21-1.40). The 4p16 signal maps within the carboxypeptidase Z (CPZ) gene. The 3q25 signal resides within the arginine/serine-rich coiled-coil 1 (RSRC1) gene and upstream of the myeloid leukemia factor 1 (MLF1) gene. Increased expression of MLF1 was observed in neuroblastoma cells homozygous for the rs6441201 risk allele (P = 0.02), and significant growth inhibition was observed upon depletion of MLF1 (P < 0.0001) in neuroblastoma cells. Taken together, we show that common DNA variants within CPZ at 4p16 and upstream of MLF1 at 3q25 influence neuroblastoma susceptibility and MLF1 likely plays an important role in neuroblastoma tumorigenesis.


Asunto(s)
Carboxipeptidasas/genética , Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 4/genética , Neuroblastoma/genética , Polimorfismo de Nucleótido Simple , Proteínas/genética , Estudios de Casos y Controles , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN , Femenino , Silenciador del Gen , Homocigoto , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas/metabolismo
3.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895237

RESUMEN

Cancer remains a leading cause of mortality globally. Recent improvements in survival have been facilitated by the development of less toxic immunotherapies; however, identifying targets for immunotherapies remains a challenge in the field. To address this challenge, we developed IMMUNOTAR, a computational tool that systematically prioritizes and identifies candidate immunotherapeutic targets. IMMUNOTAR integrates user-provided RNA-sequencing or proteomics data with quantitative features extracted from publicly available databases based on predefined optimal immunotherapeutic target criteria and quantitatively prioritizes potential surface protein targets. We demonstrate the utility and flexibility of IMMUNOTAR using three distinct datasets, validating its effectiveness in identifying both known and new potential immunotherapeutic targets within the analyzed cancer phenotypes. Overall, IMMUNOTAR enables the compilation of data from multiple sources into a unified platform, allowing users to simultaneously evaluate surface proteins across diverse criteria. By streamlining target identification, IMMUNOTAR empowers researchers to efficiently allocate resources and accelerate immunotherapy development.

4.
J Natl Cancer Inst ; 116(1): 149-159, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-37688579

RESUMEN

BACKGROUND: Neuroblastoma is an embryonal cancer of the developing sympathetic nervous system. The genetic contribution of rare pathogenic or likely pathogenic germline variants in patients without a family history remains unclear. METHODS: Germline DNA sequencing was performed on 786 neuroblastoma patients. The frequency of rare cancer predisposition gene pathogenic or likely pathogenic variants in patients was compared with 2 cancer-free control cohorts. Matched tumor DNA sequencing was evaluated for second hits, and germline DNA array data from 5585 neuroblastoma patients and 23 505 cancer-free control children were analyzed to identify rare germline copy number variants. Patients with germline pathogenic or likely pathogenic variants were compared with those without to test for association with clinical characteristics, tumor features, and survival. RESULTS: We observed 116 pathogenic or likely pathogenic variants involving 13.9% (109 of 786) of neuroblastoma patients, representing a statistically significant excess burden compared with cancer-free participants (odds ratio [OR] = 1.60, 95% confidence interval [CI] = 1.27 to 2.00). BARD1 harbored the most statistically significant enrichment of pathogenic or likely pathogenic variants (OR = 32.30, 95% CI = 6.44 to 310.35). Rare germline copy number variants disrupting BARD1 were identified in patients but absent in cancer-free participants (OR = 29.47, 95% CI = 1.52 to 570.70). Patients harboring a germline pathogenic or likely pathogenic variant had a worse overall survival compared with those without (P = 8.6 x 10-3). CONCLUSIONS: BARD1 is an important neuroblastoma predisposition gene harboring both common and rare germline pathogenic or likely pathogenic variations. The presence of any germline pathogenic or likely pathogenic variant in a cancer predisposition gene was independently predictive of worse overall survival. As centers move toward paired tumor-normal sequencing at diagnosis, efforts should be made to centralize data and provide an infrastructure to support cooperative longitudinal prospective studies of germline pathogenic variation.


Asunto(s)
Predisposición Genética a la Enfermedad , Neuroblastoma , Niño , Humanos , Estudios Prospectivos , Proteína BRCA1/genética , Mutación de Línea Germinal , Neuroblastoma/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
5.
bioRxiv ; 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106022

RESUMEN

Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 60 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Moreover, DLK1 is highly expressed in several adult cancer types, including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG), hepatoblastoma, and small cell lung cancer (SCLC), suggesting potential clinical benefit beyond neuroblastoma. Taken together, our study demonstrates the utility of comprehensive cancer surfaceome characterization and credentials DLK1 as an immunotherapeutic target. Highlights: Plasma membrane enriched proteomics defines surfaceome of neuroblastomaMulti-omic data integration prioritizes DLK1 as a candidate immunotherapeutic target in neuroblastoma and other cancersDLK1 expression is driven by a super-enhancer DLK1 silencing in neuroblastoma cells results in cellular differentiation ADCT-701, a DLK1-targeting antibody-drug conjugate, shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma preclinical models.

6.
Cancer Res ; 83(20): 3462-3477, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37584517

RESUMEN

Long noncoding RNAs (lncRNA) play an important role in gene regulation and contribute to tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, we curated RNA sequencing data for 1,044 pediatric leukemia and extracranial solid tumors and integrated paired tumor whole genome sequencing and epigenetic data in relevant cell line models to explore lncRNA expression, regulation, and association with cancer. A total of 2,657 lncRNAs were robustly expressed across six pediatric cancers, including 1,142 exhibiting histotype-elevated expression. DNA copy number alterations contributed to lncRNA dysregulation at a proportion comparable to protein coding genes. Application of a multidimensional framework to identify and prioritize lncRNAs impacting gene networks revealed that lncRNAs dysregulated in pediatric cancer are associated with proliferation, metabolism, and DNA damage hallmarks. Analysis of upstream regulation via cell type-specific transcription factors further implicated distinct histotype-elevated and developmental lncRNAs. Integration of these analyses prioritized lncRNAs for experimental validation, and silencing of TBX2-AS1, the top-prioritized neuroblastoma-specific lncRNA, resulted in significant growth inhibition of neuroblastoma cells, confirming the computational predictions. Taken together, these data provide a comprehensive characterization of lncRNA regulation and function in pediatric cancers and pave the way for future mechanistic studies. SIGNIFICANCE: Comprehensive characterization of lncRNAs in pediatric cancer leads to the identification of highly expressed lncRNAs across childhood cancers, annotation of lncRNAs showing histotype-specific elevated expression, and prediction of lncRNA gene regulatory networks.


Asunto(s)
Leucemia , Neuroblastoma , ARN Largo no Codificante , Adulto , Humanos , Niño , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Perfilación de la Expresión Génica , Neuroblastoma/genética , Leucemia/genética , Genómica , Redes Reguladoras de Genes , Regulación Neoplásica de la Expresión Génica
7.
medRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747619

RESUMEN

Importance: Neuroblastoma accounts for 12% of childhood cancer deaths. The genetic contribution of rare pathogenic germline variation in patients without a family history remains unclear. Objective: To define the prevalence, spectrum, and clinical significance of pathogenic germline variation in cancer predisposition genes (CPGs) in neuroblastoma patients. Design Setting and Participants: Germline DNA sequencing was performed on the peripheral blood from 786 neuroblastoma patients unselected for family history. Rare variants mapping to CPGs were evaluated for pathogenicity and the percentage of cases harboring pathogenic (P) or likely pathogenic (LP) variants was quantified. The frequency of CPG P-LP variants in neuroblastoma cases was compared to two distinct cancer-free control cohorts to assess enrichment. Matched tumor DNA sequencing was evaluated for "second hits" at CPGs and germline DNA array data from 5,585 neuroblastoma cases and 23,505 cancer-free control children was analyzed to identify rare germline copy number variants (CNVs) affecting genes with an excess burden of P-LP variants in neuroblastoma. Neuroblastoma patients with germline P-LP variants were compared to those without P-LP variants to test for association with clinical characteristics, tumor features, and patient survival. Main Outcomes and Measures: Rare variant prevalence, pathogenicity, enrichment, and association with clinical characteristics, tumor features, and patient survival. Results: We observed 116 P-LP variants in CPGs involving 13.9% (109/786) of patients, representing a significant excess burden of P-LP variants compared to controls (9.1%; P = 5.14 × 10-5, Odds Ratio: 1.60, 95% confidence interval: 1.27-2.00). BARD1 harbored the most significant burden of P-LP variants compared to controls (1.0% vs. 0.03%; P = 8.18 × 10-7; Odds Ratio: 32.30, 95% confidence interval: 6.44-310.35). Rare germline CNVs disrupting BARD1 were also identified in neuroblastoma patients (0.05%) but absent in controls (P = 7.08 × 10-3; Odds Ratio: 29.47, 95% confidence interval: 1.52 - 570.70). Overall, P-LP variants in DNA repair genes in this study were enriched in cases compared to controls (8.1% vs. 5.7%; P = 0.01; Odds Ratio: 1.45, 95% confidence interval: 1.08-1.92). Neuroblastoma patients harboring a germline P-LP variant had a worse overall survival when compared to patients without P-LP variants (P = 8.6 × 10-3), and this remained significant in a multivariate Cox proportional-hazards model (P = 0.01). Conclusions and Relevance: Neuroblastoma patients harboring germline P-LP variants in CPGs have worse overall survival and BARD1 is an important predisposition gene affected by both common and rare pathogenic variation. Germline sequencing should be performed for all neuroblastoma patients at diagnosis to inform genetic counseling and support future longitudinal and mechanistic studies. Patients with a germline P-LP variant should be closely monitored, regardless of risk group assignment.

8.
Sci Data ; 7(1): 116, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286315

RESUMEN

Understanding the aberrant transcriptional landscape of neuroblastoma is necessary to provide insight to the underlying influences of the initiation, progression and persistence of this developmental cancer. Here, we present chromatin immunoprecipitation sequencing (ChIP-Seq) data for the oncogenic transcription factors, MYCN and MYC, as well as regulatory histone marks H3K4me1, H3K4me3, H3K27Ac, and H3K27me3 in ten commonly used human neuroblastoma-derived cell line models. In addition, for all of the profiled cell lines we provide ATAC-Seq as a measure of open chromatin. We validate specificity of global MYCN occupancy in MYCN amplified cell lines and functional redundancy of MYC occupancy in MYCN non-amplified cell lines. Finally, we show with H3K27Ac ChIP-Seq that these cell lines retain expression of key neuroblastoma super-enhancers (SE). We anticipate this dataset, coupled with available transcriptomic profiling on the same cell lines, will enable the discovery of novel gene regulatory mechanisms in neuroblastoma.


Asunto(s)
Epigenómica , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Línea Celular Tumoral , Cromatina/genética , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Histonas/genética , Humanos
9.
Cancer Res ; 80(12): 2663-2675, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32291317

RESUMEN

Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (n = 104) and patient-derived xenografts (n = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in ATRX were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT+, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT+, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; P < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neuroblastoma/genética , Telomerasa/metabolismo , Homeostasis del Telómero , Telómero/metabolismo , Línea Celular Tumoral , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Recurrencia Local de Neoplasia , Neuroblastoma/mortalidad , Neuroblastoma/patología , ARN Mensajero/aislamiento & purificación , ARN Mensajero/metabolismo , RNA-Seq , Telomerasa/genética , Telomerasa/aislamiento & purificación , Secuenciación Completa del Genoma , Proteína Nuclear Ligada al Cromosoma X/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cancer Cell ; 28(5): 599-609, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26481147

RESUMEN

A more complete understanding of aberrant oncogenic signaling in neuroblastoma, a malignancy of the developing sympathetic nervous system, is paramount to improving patient outcomes. Recently, we identified LIN28B as an oncogenic driver in high-risk neuroblastoma. Here, we identify the oncogene RAN as a LIN28B target and show regional gain of chromosome 12q24 as an additional somatic alteration resulting in increased RAN expression. We show that LIN28B influences RAN expression by promoting RAN Binding Protein 2 expression and by directly binding RAN mRNA. Further, we demonstrate a convergence of LIN28B and RAN signaling on Aurora kinase A activity. Collectively, these findings demonstrate that LIN28B-RAN-AURKA signaling drives neuroblastoma oncogenesis, suggesting that this pathway may be amenable to therapeutic targeting.


Asunto(s)
Aurora Quinasa A/genética , Neuroblastoma/genética , Proteínas de Unión al ARN/genética , Transducción de Señal/genética , Proteína de Unión al GTP ran/genética , Aurora Quinasa A/metabolismo , Western Blotting , Carcinogénesis/genética , Línea Celular Tumoral , Niño , Cromosomas Humanos Par 12/genética , Variaciones en el Número de Copia de ADN , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , MicroARNs/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína de Unión al GTP ran/metabolismo
11.
Org Biomol Chem ; 4(14): 2777-84, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16826303

RESUMEN

Many carbenoid cyclopropanation reactions promoted by chiral catalysts give product mixtures reflecting impressive diastereo- and enantioselectivities. Few provide a single chiral product efficiently. This limitation has been overcome in cyclopropanations of styrene and isotopically labeled styrenes with alpha-diazoacetates. Convenient syntheses on a 20 g scale of each of four chiral isotopically labeled (1R)-menthyl (1S,2S)-2-phenylcyclopropanecarboxylates (the 1-d-3-(13)C, 1,(3S)-d2, 1,2,(3S)-d3, and 1,3,3-d3 isotopomers) of better than 99% ee have been realized.


Asunto(s)
Ácidos Carboxílicos/química , Ciclopropanos/química , Ciclopropanos/síntesis química , Isótopos de Carbono , Catálisis , Cobre/química , Estructura Molecular , Estereoisomerismo , Estireno/química
12.
Proc Natl Acad Sci U S A ; 103(40): 14813-8, 2006 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-17003133

RESUMEN

Fertility of spermatozoa depends on maintenance of the mitochondrial transmembrane potential (Deltapsi(m)), which is generated by the electron-transport chain and regulated by an oxidation-reduction equilibrium of reactive oxygen intermediates, pyridine nucleotides, and glutathione (GSH). Here, we report that male mice lacking transaldolase (TAL)(-/-) are sterile because of defective forward motility. TAL(-/-) spermatozoa show loss of Deltapsi(m) and mitochondrial membrane integrity because of diminished NADPH, NADH, and GSH. Mitochondria constitute major Ca(2+) stores; thus, diminished mitochondrial mass accounts for reduced Ca(2+) fluxing, defective forward motility, and infertility. Reduced forward progression of TAL-deficient spermatozoa is associated with diminished mitochondrial reactive oxygen intermediate production and Ca(2+) levels, intracellular acidosis, and compensatory down-regulation of carbonic anhydrase IV and overexpression of CD38 and gamma-glutamyl transferase. Microarray analyses of gene expression in the testis, caput, and cauda epididymidis of TAL(+/+), TAL(+/-), and TAL(-/-) littermates confirmed a dominant impact of TAL deficiency on late stages of sperm-cell development, affecting the electron-transport chain and GSH metabolism. Stimulation of de novo GSH synthesis by oral N-acetyl-cysteine normalized the low fertility rate of TAL(+/-) males without affecting the sterility of TAL(-/-) males. Whereas TAL(-/-) sperm failed to fertilize TAL(+/+) oocytes in vitro, sterility of TAL(-/-) sperm was circumvented by intracytoplasmic sperm injection, indicating that TAL deficiency influenced the structure and function of mitochondria without compromising the nucleus and DNA integrity. Collectively, these data reveal an essential role of TAL in sperm-cell mitochondrial function and, thus, male fertility.


Asunto(s)
Fertilidad/fisiología , Membranas Mitocondriales/enzimología , Espermatozoides/enzimología , Espermatozoides/fisiología , Transaldolasa/metabolismo , Animales , Señalización del Calcio/fisiología , Epidídimo/enzimología , Epidídimo/ultraestructura , Expresión Génica , Silenciador del Gen , Heterocigoto , Homocigoto , Infertilidad Masculina , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Mitocondrias/patología , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Recombinación Genética , Motilidad Espermática/fisiología , Espermatozoides/citología , Espermatozoides/ultraestructura , Fosfatos de Azúcar/metabolismo , Transaldolasa/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA