Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Chem Soc Rev ; 50(17): 9443-9481, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34368824

RESUMEN

The enzymatic generation of carbon-halogen bonds is a powerful strategy used by both nature and synthetic chemists to tune the bioactivity, bioavailability and reactivity of compounds, opening up the opportunity for selective C-H functionalisation. Genes encoding halogenase enzymes have recently been shown to transcend all kingdoms of life. These enzymes install halogen atoms into aromatic and less activated aliphatic substrates, achieving selectivities that are often challenging to accomplish using synthetic methodologies. Significant advances in both halogenase discovery and engineering have provided a toolbox of enzymes, enabling the ready use of these catalysts in biotransformations, synthetic biology, and in combination with chemical catalysis to enable late stage C-H functionalisation. With a focus on substrate scope, this review outlines the mechanisms employed by the major classes of halogenases, while in parallel, it highlights key advances in the utilisation of the combination of enzymatic halogenation and chemical catalysis for C-H activation and diversification.


Asunto(s)
Halogenación , Biología Sintética , Catálisis
2.
Proc Natl Acad Sci U S A ; 111(17): 6401-6, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733924

RESUMEN

There is a need for new approaches for the control of influenza given the burden caused by annual seasonal outbreaks, the emergence of viruses with pandemic potential, and the development of resistance to current antiviral drugs. We show that multivalent biologics, engineered using carbohydrate-binding modules specific for sialic acid, mask the cell-surface receptor recognized by the influenza virus and protect mice from a lethal challenge with 2009 pandemic H1N1 influenza virus. The most promising biologic protects mice when given as a single 1-µg intranasal dose 7 d in advance of viral challenge. There also is sufficient virus replication to establish an immune response, potentially protecting the animal from future exposure to the virus. Furthermore, the biologics appear to stimulate inflammatory mediators, and this stimulation may contribute to their protective ability. Our results suggest that this host-targeted approach could provide a front-line prophylactic that has the potential to protect against any current and future influenza virus and possibly against other respiratory pathogens that use sialic acid as a receptor.


Asunto(s)
Gripe Humana/metabolismo , Gripe Humana/prevención & control , Ingeniería de Proteínas , Receptores Virales/metabolismo , Animales , Peso Corporal , Quimiocinas/metabolismo , Perros , Humanos , Mediadores de Inflamación/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Pulmón/patología , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones , Ácido N-Acetilneuramínico/metabolismo , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Receptores de Superficie Celular/metabolismo , Análisis de Supervivencia
3.
Antimicrob Agents Chemother ; 59(3): 1495-504, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534734

RESUMEN

Compounds that target the cellular factors essential for influenza virus replication represent an innovative approach to antiviral therapy. Sp2CBMTD is a genetically engineered multivalent protein that masks sialic acid-containing cellular receptors on the respiratory epithelium, which are recognized by influenza viruses. Here, we evaluated the antiviral potential of Sp2CBMTD against lethal infection in mice with an emerging A/Anhui/1/2013 (H7N9) influenza virus and addressed the mechanistic basis of its activity in vivo. Sp2CBMTD was administered to mice intranasally as a single or repeated dose (0.1, 1, 10, or 100 µg) before (day -7, -3, and/or -1) or after (6 or 24 h) H7N9 virus inoculation. A single Sp2CBMTD dose (10 or 100 µg) protected 80% to 100% of the mice when administered 7 days before the H7N9 lethal challenge. Repeated Sp2CBMTD administration conferred the highest protection, resulting in 100% survival of the mice even at the lowest dose tested (0.1 µg). When treatment began 24 h after exposure to the H7N9 virus, a single administration of 100 µg of Sp2CBMTD protected 40% of the mice from death. The administration of Sp2CBMTD induced the pulmonary expression of proinflammatory mediators (interleukin-6 [IL-6], IL-1ß, RANTES, monocyte chemotactic protein-1 [MCP-1], macrophage inflammatory protein-1α [MIP-1α], and inducible protein [IP-10]) and recruited neutrophils to the respiratory tract before H7N9 virus infection, which resulted in less pronounced inflammation and rapid virus clearance from mouse lungs. Sp2CBMTD administration did not affect the virus-specific adaptive immune response, which was sufficient to protect against reinfection with a higher dose of homologous H7N9 virus or heterologous H5N1 virus. Thus, Sp2CBMTD was effective in preventing H7N9 infections in a lethal mouse model and holds promise as a prophylaxis option against zoonotic influenza viruses.


Asunto(s)
Antivirales/uso terapéutico , Proteínas Portadoras/uso terapéutico , Subtipo H7N9 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Receptores de Superficie Celular/fisiología , Ácidos Siálicos/metabolismo , Animales , Quimiocinas/biosíntesis , Citocinas/biosíntesis , Femenino , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Replicación Viral
4.
BMC Struct Biol ; 15: 15, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26289431

RESUMEN

BACKGROUND: Streptococcus pneumoniae Neuraminidase A (NanA) is a multi-domain protein anchored to the bacterial surface. Upstream of the catalytic domain of NanA is a domain that conforms to the sialic acid-recognising CBM40 family of the CAZY (carbohydrate-active enzymes) database. This domain has been identified to play a critical role in allowing the bacterium to promote adhesion and invasion of human brain microvascular endothelial cells, and hence may play a key role in promoting bacterial meningitis. In addition, the CBM40 domain has also been reported to activate host chemokines and neutrophil recruitment during infection. RESULTS: Crystal structures of both apo- and holo- forms of the NanA CBM40 domain (residues 121 to 305), have been determined to 1.8 Å resolution. The domain shares the fold of other CBM40 domains that are associated with sialidases. When in complex with α2,3- or α2,6-sialyllactose, the domain is shown to interact only with the terminal sialic acid. Significantly, a deep acidic pocket adjacent to the sialic acid-binding site is identified, which is occupied by a lysine from a symmetry-related molecule in the crystal. This pocket is adjacent to a region that is predicted to be involved in protein-protein interactions. CONCLUSIONS: The structural data provide the details of linkage-independent sialyllactose binding by NanA CBM40 and reveal striking surface features that may hold the key to recognition of binding partners on the host cell surface. The structure also suggests that small molecules or sialic acid analogues could be developed to fill the acidic pocket and hence provide a new therapeutic avenue against meningitis caused by S. pneumoniae.


Asunto(s)
Proteínas Bacterianas/química , Neuraminidasa/química , Streptococcus pneumoniae/enzimología , Factores de Virulencia/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Lactosa/análogos & derivados , Lactosa/metabolismo , Modelos Moleculares , Neuraminidasa/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Ácidos Siálicos/metabolismo , Streptococcus pneumoniae/química , Factores de Virulencia/metabolismo
5.
Water Res ; 256: 121492, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593604

RESUMEN

Cyanobacterial blooms, producing toxic secondary metabolites, are becoming increasingly common phenomena in the face of rising global temperatures. They are the world's most abundant photosynthetic organisms, largely owing their success to a range of highly diverse and complex natural products possessing a broad spectrum of different bioactivities. Over 2600 compounds have been isolated from cyanobacteria thus far, and their characterisation has revealed unusual and useful chemistries and motifs including alkynes, halogens, and non-canonical amino acids. Genome sequencing of cyanobacteria lags behind natural product isolation, with only 19% of cyanobacterial natural products associated with a sequenced organism. Recent advances in meta(genomics) provide promise to narrow this gap and has also facilitated the uprise of combined genomic and metabolomic approaches, heralding a new era of discovery of novel compounds. Analyses of the datasets described within this manuscript reveal the asynchrony of current genomic and metabolomic data, highlight the chemical diversity of cyanobacterial natural products. Linked to this manuscript, we make these manually curated datasets freely accessible for the public to facilitate further research in this important area.


Asunto(s)
Cianobacterias , Genómica , Metabolómica , Cianobacterias/genética , Cianobacterias/metabolismo , Productos Biológicos , Genoma Bacteriano
6.
Antiviral Res ; 228: 105945, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914284

RESUMEN

Broad-acting antiviral strategies to prevent respiratory tract infections are urgently required. Emerging or re-emerging viral diseases caused by new or genetic variants of viruses such as influenza viruses (IFVs), respiratory syncytial viruses (RSVs), human rhinoviruses (HRVs), parainfluenza viruses (PIVs) or coronaviruses (CoVs), pose a severe threat to human health, particularly in the very young or old, or in those with pre-existing respiratory conditions such as asthma or chronic obstructive pulmonary disease (COPD). Although vaccines remain a key component in controlling and preventing viral infections, they are unable to provide broad-spectrum protection against recurring seasonal infections or newly emerging threats. HEX17 (aka Neumifil), is a first-in-class protein-based antiviral prophylactic for respiratory viral infections. HEX17 consists of a hexavalent carbohydrate-binding module (CBM) with high affinity to sialic acids, which are typically present on terminating branches of glycans on viral cellular receptors. This allows HEX17 to block virus engagement of host receptors and inhibit infection of a wide range of viral pathogens and their variants with reduced risk of antiviral resistance. As described herein, HEX17 has demonstrated broad-spectrum efficacy against respiratory viral pathogens including IFV, RSV, CoV and HRV in multiple in vivo and in vitro studies. In addition, HEX17 can be easily administered via an intranasal spray and is currently undergoing clinical trials.

7.
Biomolecules ; 13(8)2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37627283

RESUMEN

Cyanobacteria are the most abundant photosynthesizers on earth, and as such, they play a central role in marine metabolite generation, ocean nutrient cycling, and the control of planetary oxygen generation. Cyanobacteriophage infection exerts control on all of these critical processes of the planet, with the phage-ported homologs of genes linked to photosynthesis, catabolism, and secondary metabolism (marine metabolite generation). Here, we analyze the 153 fully sequenced cyanophages from the National Center for Biotechnology Information (NCBI) database and the 45 auxiliary metabolic genes (AMGs) that they deliver into their hosts. Most of these AMGs are homologs of those found within cyanobacteria and play a key role in cyanobacterial metabolism-encoding proteins involved in photosynthesis, central carbon metabolism, phosphate metabolism, methylation, and cellular regulation. A greater understanding of cyanobacteriophage infection will pave the way to a better understanding of carbon fixation and nutrient cycling, as well as provide new tools for synthetic biology and alternative approaches for the use of cyanobacteria in biotechnology and sustainable manufacturing.


Asunto(s)
Bacteriófagos , Cianobacterias , Virosis , Humanos , Fotosíntesis , Metabolismo Secundario , Bacteriófagos/genética
9.
J Biol Chem ; 284(11): 7339-51, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19124471

RESUMEN

Many glycoside hydrolases possess carbohydrate-binding modules (CBMs) that help target these enzymes to appropriate substrates and increase their catalytic efficiency. The Vibrio cholerae sialidase contains two CBMs, one of which is designated as a family CBM40 module and has been shown through structural and calorimetry studies to recognize the alpha-anomer of sialic acid with a KD of approximately 30 microM at 37 degrees C. The affinity of this V. cholerae CBM40 module for sialic acid is one of the highest reported for recognition of a monosaccharide by a CBM. As Nature often increases a weak substrate affinity through multivalency, we have explored the potential of developing reagents with an increased affinity for sialic acid receptors through linking CBM40 modules together. The V. cholerae CBM40 was subcloned and crystallized in the presence of sialyllactose confirming its ability to recognize sialic acid. Calorimetry revealed that this CBM40 demonstrated specificity to alpha(2,3)-, alpha(2,6)-, and alpha(2,8)-linked sialosides. Polypeptides containing up to four CBM40 modules in tandem were created to determine if an increase in affinity to sialic acid could be achieved through an avidity effect. Using SPR and a multivalent alpha(2,3)-sialyllactose ligand, we show that increasing the number of linked modules does increase the affinity for sialic acid. The four-CBM40 module protein has a 700- to 1500-fold increase in affinity compared with the single-CBM40 module. Varying the linker length of amino acids between each CBM40 module had little effect on the binding of these polypeptides. Finally, fluorescence-activated cell sorting analysis demonstrated that a green fluorescent protein fused to three CBM40 modules bound to subpopulations of human leukocytes. These studies lay the foundation for creating high affinity, multivalent CBMs that could have broad application in glycobiology.


Asunto(s)
Proteínas Bacterianas/química , Ácido N-Acetilneuramínico/química , Neuraminidasa/química , Vibrio cholerae/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Rastreo Diferencial de Calorimetría , Catálisis , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/genética , Neuraminidasa/metabolismo , Unión Proteica/genética , Especificidad por Sustrato/genética , Vibrio cholerae/genética
10.
J Virol ; 76(4): 1816-24, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11799177

RESUMEN

We recently reported the first crystal structure of a paramyxovirus hemagglutinin-neuraminidase (HN) from Newcastle disease virus. This multifunctional protein is responsible for binding to cellular sialyl-glycoconjugate receptors, promotion of fusion through interaction with the second viral surface fusion (F) glycoprotein, and processing progeny virions by removal of sialic acid from newly synthesized viral coat proteins. Our structural studies suggest that HN possesses a single sialic acid recognition site that can be switched between being a binding site and a catalytic site. Here we examine the effect of mutation of several conserved amino acids around the binding site on the hemagglutination, neuraminidase, and fusion functions of HN. Most mutations around the binding site result in loss of neuraminidase activity, whereas the effect on receptor binding is more variable. Residues E401, R416, and Y526 appear to be key for receptor binding. The increase in fusion promotion seen in some mutants that lack receptor binding activity presents a conundrum. We propose that in these cases HN may be switched into a fusion-promoting state through a series of conformational changes that propagate from the sialic acid binding site through to the HN dimer interface. These results further support the single-site model and suggest certain residues to be important for the triggering of fusion.


Asunto(s)
Aminoácidos/genética , Proteína HN/genética , Proteína HN/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Virus de la Enfermedad de Newcastle/genética , Aminoácidos/química , Aminoácidos/metabolismo , Sitios de Unión/genética , Línea Celular , Cristalización , Proteína HN/ultraestructura , Células HeLa , Humanos , Fusión de Membrana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Virus de la Enfermedad de Newcastle/metabolismo , Relación Estructura-Actividad
11.
J Virol ; 76(24): 13028-33, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12438628

RESUMEN

Paramyxovirus infects cells by initially attaching to a sialic acid-containing cellular receptor and subsequently fusing with the plasma membrane of the cells. Hemagglutinin-neuraminidase (HN) protein, which is responsible for virus attachment, interacts with the fusion protein in a virus type-specific manner to induce efficient membrane fusion. To elucidate the mechanism of HN-promoted membrane fusion, we characterized a series of Newcastle disease virus HN proteins whose surface residues were mutated. Fusion promotion activity was substantially altered in only the HN proteins with a mutation in the first or sixth beta sheet. These regions overlap the large hydrophobic surface of HN; thus, the hydrophobic surface may contain the fusion promotion domain. Furthermore, a comparison of the HN structure crystallized alone or in complex with 2-deoxy-2,3-dehydro-N-acetylneuraminic acid revealed substantial conformational changes in several loops within or near the hydrophobic surface. Our results suggest that the binding of HN protein to the receptor induces the conformational change of residues near the hydrophobic surface of HN protein and that this change triggers the activation of the F protein, which initiates membrane fusion.


Asunto(s)
Proteína HN/fisiología , Fusión de Membrana/fisiología , Virus de la Enfermedad de Newcastle/fisiología , Dimerización , Proteína HN/química , Células HeLa , Humanos , Conformación Proteica , Proteínas Virales de Fusión/fisiología
12.
Eur J Biochem ; 269(24): 6250-60, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12473121

RESUMEN

The crystal structure of citrate synthase from the thermophilic Archaeon Sulfolobus solfataricus (optimum growth temperature = 85 degrees C) has been determined, extending the number of crystal structures of citrate synthase from different organisms to a total of five that span the temperature range over which life exists (from psychrophile to hyperthermophile). Detailed structural analysis has revealed possible molecular mechanisms that determine the different stabilities of the five proteins. The key to these mechanisms is the precise structural location of the additional interactions. As one ascends the temperature ladder, the subunit interface of this dimeric enzyme and loop regions are reinforced by complex electrostatic interactions, and there is a reduced exposure of hydrophobic surface. These observations reveal a progressive pattern of stabilization through multiple additional interactions at solvent exposed, loop and interfacial regions.


Asunto(s)
Citrato (si)-Sintasa/química , Citrato (si)-Sintasa/metabolismo , Sulfolobus/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Electrones , Iones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Recombinación Genética , Homología de Secuencia de Aminoácido , Temperatura
13.
J Biol Chem ; 279(39): 40819-26, 2004 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-15226294

RESUMEN

Vibrio cholerae neuraminidase (VCNA) plays a significant role in the pathogenesis of cholera by removing sialic acid from higher order gangliosides to unmask GM1, the receptor for cholera toxin. We previously showed that the structure of VCNA is composed of a central beta-propeller catalytic domain flanked by two lectin-like domains; however the nature of the carbohydrates recognized by these lectin domains has remained unknown. We present here structures of the enzyme in complex with two substrates, alpha-2,3-sialyllactose and alpha-2,6-sialyllactose. Both substrate complexes reveal the alpha-anomer of N-acetylneuraminic acid (Neu5Ac) bound to the N-terminal lectin domain, thereby revealing the role of this domain. The large number of interactions suggest a relatively high binding affinity for sialic acid, which was confirmed by calorimetry, which gave a Kd approximately 30 microm. Saturation transfer difference NMR using a non-hydrolyzable substrate, Neu5,9Ac2-2-S-(alpha-2,6)-GlcNAcbeta1Me, was also used to map the ligand interactions at the VCNA lectin binding site. It is well known that VCNA can hydrolyze both alpha-2,3- and alpha-2,6-linked sialic acid substrates. In this study using alpha-2,3-sialyllactose co-crystallized with VCNA it was revealed that the inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en) was bound at the catalytic site. This observation supports the notion that VCNA can produce its own inhibitor and has been further confirmed by 1H NMR analysis. The discovery of the sialic acid binding site in the N-lectin-like domain suggests that this might help target VCNA to sialic acid-rich environments, thereby enhancing the catalytic efficiency of the enzyme.


Asunto(s)
Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/química , Vibrio cholerae/enzimología , Sitios de Unión , Calcio/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Catálisis , Toxina del Cólera/química , Electrones , Escherichia coli/metabolismo , Hidrólisis , Iones , Cinética , Lectinas/química , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Ácido N-Acetilneuramínico/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína
14.
J Biol Chem ; 279(42): 43886-92, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15265860

RESUMEN

The hyperthermophilic Archaea Sulfolobus solfataricus grows optimally above 80 degrees C and metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to D-2-keto-3-deoxygluconate (KDG). KDG aldolase (KDGA) then catalyzes the cleavage of KDG to D-glyceraldehyde and pyruvate. It has recently been shown that all the enzymes of this pathway exhibit a catalytic promiscuity that also enables them to be used for the metabolism of galactose. This phenomenon, known as metabolic pathway promiscuity, depends crucially on the ability of KDGA to cleave KDG and D-2-keto-3-deoxygalactonate (KDGal), in both cases producing pyruvate and D-glyceraldehyde. In turn, the aldolase exhibits a remarkable lack of stereoselectivity in the condensation reaction of pyruvate and D-glyceraldehyde, forming a mixture of KDG and KDGal. We now report the structure of KDGA, determined by multiwavelength anomalous diffraction phasing, and confirm that it is a member of the tetrameric N-acetylneuraminate lyase superfamily of Schiff base-forming aldolases. Furthermore, by soaking crystals of the aldolase at more than 80 degrees C below its temperature activity optimum, we have been able to trap Schiff base complexes of the natural substrates pyruvate, KDG, KDGal, and pyruvate plus D-glyceraldehyde, which have allowed rationalization of the structural basis of promiscuous substrate recognition and catalysis. It is proposed that the active site of the enzyme is rigid to keep its thermostability but incorporates extra functionality to be promiscuous.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Sulfolobus/enzimología , Sitios de Unión , Clonación Molecular , Cinética , Sustancias Macromoleculares , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Selenometionina/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA