Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci Res ; 101(6): 1000-1028, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36749877

RESUMEN

Oligodendrocytes are a type of glial cells that produce a lipid-rich membrane called myelin. Myelin assembles into a sheath and lines neuronal axons in the brain and spinal cord to insulate them. This not only increases the speed and efficiency of nerve signal transduction but also protects the axons from damage and degradation, which could trigger neuronal cell death. Demyelination, which is caused by a loss of myelin and oligodendrocytes, is a prominent feature of many neurological conditions, including Multiple sclerosis (MS), spinal cord injuries (SCI), and leukodystrophies. Demyelination is followed by a time of remyelination mediated by the recruitment of endogenous oligodendrocyte precursor cells, their migration to the injury site, and differentiation into myelin-producing oligodendrocytes. Unfortunately, endogenous remyelination is not sufficient to overcome demyelination, which explains why there are to date no regenerative-based treatments for MS, SCI, or leukodystrophies. To better understand the role of oligodendrocytes and develop cell-based remyelination therapies, human oligodendrocytes have been derived from somatic cells using cell reprogramming. This review will detail the different cell reprogramming methods that have been developed to generate human oligodendrocytes and their applications to disease modeling and cell-based remyelination therapies. Recent developments in the field have seen the derivation of brain organoids from pluripotent stem cells, and protocols have been devised to incorporate oligodendrocytes within the organoids, which will also be reviewed.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Remielinización , Traumatismos de la Médula Espinal , Humanos , Reprogramación Celular , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Enfermedades Desmielinizantes/terapia , Enfermedades Desmielinizantes/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Esclerosis Múltiple/metabolismo , Diferenciación Celular/fisiología
2.
Stem Cells ; 39(10): 1410-1422, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34028139

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Using a highly efficient protocol for direct reprogramming of adult human fibroblasts with chemically modified mRNA, we report the first generation of HD induced neural precursor cells (iNPs) expressing striatal lineage markers that differentiated into DARPP32+ neurons from individuals with adult-onset HD (41-57 CAG). While no transcriptional differences between normal and HD reprogrammed neurons were detected by NanoString nCounter analysis, a subpopulation of HD reprogrammed neurons contained ubiquitinated polyglutamine aggregates. Importantly, reprogrammed HD neurons exhibited impaired neuronal maturation, displaying altered neurite morphology and more depolarized resting membrane potentials. Reduced BDNF protein expression in reprogrammed HD neurons correlated with increased CAG repeat lengths and earlier symptom onset. This model represents a platform for investigating impaired neuronal maturation and screening for neuronal maturation modifiers to treat HD.


Asunto(s)
Enfermedad de Huntington , Células-Madre Neurales , Cuerpo Estriado , Humanos , Enfermedad de Huntington/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/metabolismo
3.
J Neuroinflammation ; 17(1): 53, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050980

RESUMEN

BACKGROUND: Atypical antipsychotic agents, such as clozapine, are used to treat schizophrenia and other psychiatric disorders by a mechanism that is believed to involve modulating the immune system. Multiple sclerosis is an immune-mediated neurological disease, and recently, clozapine was shown to reduce disease severity in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). However, the mode of action by which clozapine reduces disease in this model is poorly understood. METHODS: Because the mode of action by which clozapine reduces neuroinflammation is poorly understood, we used the EAE model to elucidate the in vivo and in vitro effects of clozapine. RESULTS: In this study, we report that clozapine treatment reduced the infiltration of peripheral immune cells into the central nervous system (CNS) and that this correlated with reduced expression of the chemokines CCL2 and CCL5 transcripts in the brain and spinal cord. We assessed to what extent immune cell populations were affected by clozapine treatment and we found that clozapine targets the expression of chemokines by macrophages and primary microglia. Furthermore, in addition to decreasing CNS infiltration by reducing chemokine expression, we found that clozapine directly inhibits chemokine-induced migration of immune cells. This direct target on the immune cells was not mediated by a change in receptor expression on the immune cell surface but by decreasing downstream signaling via these receptors leading to a reduced migration. CONCLUSIONS: Taken together, our study indicates that clozapine protects against EAE by two different mechanisms; first, by reducing the chemoattractant proteins in the CNS; and second, by direct targeting the migration potential of peripheral immune cells.


Asunto(s)
Encéfalo/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Clozapina/farmacología , Encefalomielitis Autoinmune Experimental/metabolismo , Médula Espinal/efectos de los fármacos , Animales , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Antagonistas de la Serotonina/farmacología , Médula Espinal/metabolismo
4.
Adv Exp Med Biol ; 1266: 57-69, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33105495

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder which is characterised by a triad of highly debilitating motor, cognitive, and psychiatric symptoms. While cell death occurs in many brain regions, GABAergic medium spiny neurons (MSNs) in the striatum experience preferential and extensive degeneration. Unlike most neurodegenerative disorders, HD is caused by a single genetic mutation resulting in a CAG repeat expansion and the production of a mutant Huntingtin protein (mHTT). Despite identifying the mutation causative of HD in 1993, there are currently no disease-modifying treatments for HD. One potential strategy for the treatment of HD is the development of cell-based therapies. Cell-based therapies aim to restore neuronal circuitry and function by replacing lost neurons, as well as providing neurotropic support to prevent further degeneration. In order to successfully restore basal ganglia functioning in HD, cell-based therapies would need to reconstitute the complex signalling network disrupted by extensive MSN degeneration. This chapter will discuss the potential use of foetal tissue grafts, pluripotent stem cells, neural stem cells, and somatic cell reprogramming to develop cell-based therapies for treating HD.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Enfermedad de Huntington , Animales , Reprogramación Celular , Cuerpo Estriado , Modelos Animales de Enfermedad , Trasplante de Tejido Fetal , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Células-Madre Neurales , Neuronas , Células Madre Pluripotentes
5.
Stem Cells ; 36(2): 146-160, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29178352

RESUMEN

Two decades ago, researchers identified that a CAG expansion mutation in the huntingtin (HTT) gene was involved in the pathogenesis of Huntington's disease (HD). However, since the identification of the HTT gene, there has been no advance in the development of therapeutic strategies to prevent or reduce the progression of HD. With the recent advances in stem cell biology and human cell reprogramming technologies, several novel and exciting pathways have emerged allowing researchers to enhance their understanding of the pathogenesis of HD, to identify and screen potential drug targets, and to explore alternative donor cell sources for cell replacement therapy. This review will discuss the role of compensatory neurogenesis in the HD brain, the use of stem cell-based therapies for HD to replace or prevent cell loss, and the recent advance of cell reprogramming to model and/or treat HD. These new technologies, coupled with advances in genome editing herald a promising new era for HD research with the potential to identify a therapeutic strategy to alleviate this debilitating disorder. Stem Cells 2018;36:146-160.


Asunto(s)
Enfermedad de Huntington/terapia , Animales , Edición Génica , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Mutación/genética , Trasplante de Células Madre
6.
J Neuroinflammation ; 14(1): 68, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28356108

RESUMEN

Atypical antipsychotic agents, such as clozapine, are used for treating psychosis and depression and have recently been found to modulate neuroinflammation. We have shown previously that treatment of mice with the atypical antipsychotic agents, clozapine or risperidone, attenuates disease severity in experimental autoimmune encephalomyelitis (EAE); however, the mechanism by which they are protective is unknown. In this study, we investigated the effects of clozapine on CD4+ T cell responses and found that clozapine did not significantly affect the expansion of myelin-specific T cells, their differentiation into pathogenic subsets, or their encephalitogenic capacity to induce EAE. Interestingly, although clozapine enhanced differentiation of regulatory T (Treg) cells, in vivo neutralization of Tregs indicated that Tregs were not responsible for the protective effects of clozapine during the induction and effector phase of EAE. Taken together, our studies indicate that clozapine does not mediate its protective effects by directly altering CD4 T cells.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Clozapina/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Animales , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Clozapina/farmacología , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
J Neurosci Methods ; 405: 110102, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432304

RESUMEN

Cell reprogramming holds enormous potential to revolutionize our understanding of neurological and neurodevelopmental disorders, as well as enhance drug discovery and regenerative medicine. We have developed a direct cell reprogramming technology that allows us to generate lineage-specific neural cells. To extend our technology, we have investigated the incorporation of directly reprogrammed human lateral ganglionic eminence precursor cells (hiLGEPs) in a 3-dimensional (3D) matrix. Hydrogels are one of the most promising bio-scaffolds for 3D cell culture, providing cells with a supportive environment to adhere, proliferate, and differentiate. In particular, gelatin methacryloyl (GelMA) hydrogels have been used for a variety of 3D biomedical applications due to their biocompatibility, enzymatic cleavage, cell adhesion and tunable physical characteristics. This study therefore investigated the effect of GelMA hydrogel encapsulation on the survival and differentiation of hiLGEPs, both in vitro and following ex vivo transplantation into a quinolinic acid (QA) lesion rat organotypic slice culture model. We demonstrate, for the first time, that the encapsulation of hiLGEPs in GelMA hydrogel significantly enhances the survival and generation of DARPP32+ striatal neurons both in vitro and following ex vivo transplant. Furthermore, GelMA-encapsulated hiLGEPs were predominantly located away from the reactive astrocyte network that forms following QA lesioning, suggesting GelMA provides a protective barrier for cells in regions of inflammatory activation. Overall, these results indicate that GelMA hydrogel has the potential to act as a 3D bio-scaffold to augment the viability and differentiation of hiLGEPs for research and translation of pharmaceutical development and regenerative medicine.


Asunto(s)
Eminencia Ganglionar , Hidrogeles , Humanos , Ratas , Animales , Gelatina/farmacología , Metacrilatos , Andamios del Tejido
8.
Biomater Adv ; 159: 213837, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522310

RESUMEN

Poloxamer-based hydrogels show promise to stabilise and sustain the delivery of growth factors in tissue engineering applications, such as following spinal cord injury. Typically, growth factors such as neurotrophin-3 (NT-3) degrade rapidly in solution. Similarly, poloxamer hydrogels also degrade readily and are, therefore, only capable of sustaining the release of a payload over a small number of days. In this study, we focused on optimising a hydrogel formulation, incorporating both poloxamer 188 and 407, for the sustained delivery of bioactive NT-3. Hyaluronic acid blended into the hydrogels significantly reduced the degradation of the gel. We identified an optimal hydrogel composition consisting of 20 % w/w poloxamer 407, 5 % w/w poloxamer 188, 0.6 % w/w NaCl, and 1.5 % w/w hyaluronic acid. Heparin was chemically bound to the poloxamer chains to enhance interactions between the hydrogel and the growth factor. The unmodified and heparin-modified hydrogels exhibited sustained release of NT-3 for 28 days while preserving the bioactivity of NT-3. Moreover, these hydrogels demonstrated excellent cytocompatibility and had properties suitable for injection into the intrathecal space, underscoring their suitability as a growth factor delivery system. The findings presented here contribute valuable insights to the development of effective delivery strategies for therapeutic growth factors for tissue engineering approaches, including the treatment of spinal cord injury.


Asunto(s)
Hidrogeles , Traumatismos de la Médula Espinal , Humanos , Hidrogeles/uso terapéutico , Poloxámero/química , Poloxámero/uso terapéutico , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/uso terapéutico , Ácido Hialurónico/química , Ácido Hialurónico/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Heparina/farmacología , Heparina/química , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico
9.
Stem Cells Dev ; 33(5-6): 128-142, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164119

RESUMEN

Rett Syndrome (RTT) is a severe neurodevelopmental disorder, afflicting 1 in 10,000 female births. It is caused by mutations in the X-linked methyl-CpG-binding protein gene (MECP2), which encodes for the global transcriptional regulator methyl CpG binding protein 2 (MeCP2). As human brain samples of RTT patients are scarce and cannot be used for downstream studies, there is a pressing need for in vitro modeling of pathological neuronal changes. In this study, we use a direct reprogramming method for the generation of neuronal cells from MeCP2-deficient and wild-type human dermal fibroblasts using two episomal plasmids encoding the transcription factors SOX2 and PAX6. We demonstrated that the obtained neurons exhibit a typical neuronal morphology and express the appropriate marker proteins. RNA-sequencing confirmed neuronal identity of the obtained MeCP2-deficient and wild-type neurons. Furthermore, these MeCP2-deficient neurons reflect the pathophysiology of RTT in vitro, with diminished dendritic arborization and hyperacetylation of histone H3 and H4. Treatment with MeCP2, tethered to the cell penetrating peptide TAT, ameliorated hyperacetylation of H4K16 in MeCP2-deficient neurons, which strengthens the RTT relevance of this cell model. We generated a neuronal model based on direct reprogramming derived from patient fibroblasts, providing a powerful tool to study disease mechanisms and investigating novel treatment options for RTT.


Asunto(s)
Síndrome de Rett , Humanos , Femenino , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Neuronas/metabolismo , Histonas/metabolismo , Encéfalo/patología , Mutación
10.
J Cell Biochem ; 114(4): 754-63, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23097329

RESUMEN

Huntington's disease (HD) is a late-onset neurodegenerative disease characterized by a progressive loss of medium spiny neurons in the basal ganglia. The development of stem cell-based therapies for HD aims to replace lost neurons and/or to prevent cell death. This review will discuss pre-clinical studies which have utilized stem or progenitor cells for transplantation therapy using HD animal models. In several studies, neural stem and progenitor cells used as allotransplants and xenografts have been shown to be capable of surviving transplantation and differentiating into mature GABAergic neurons, resulting in behavioral improvements. Beneficial effects have also been reported for transplantation of stem cells derived from non-neural tissue, for example, mesenchymal- and adipose-derived stem cells, which have mainly been attributed to their secretion of growth and neurotrophic factors. Finally, we review studies using stem cells genetically engineered to over-express defined neurotrophic factors. While these studies prove the potential of stem cells for transplantation therapy in HD, it also becomes clear that technical and ethical issues regarding the availability of stem cells must be solved before human trials can be conducted.


Asunto(s)
Encéfalo/patología , Enfermedad de Huntington/terapia , Trasplante de Células Madre , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Humanos , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos/genética , Ratones Transgénicos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Ratas , Secuencias Repetitivas de Ácidos Nucleicos
11.
Front Cell Neurosci ; 17: 1254412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810261

RESUMEN

Introduction: The neurodevelopmental disorder fragile X syndrome (FXS) is the most common monogenic cause of intellectual disability associated with autism spectrum disorder. Inaccessibility to developing human brain cells is a major barrier to studying FXS. Direct-to-neural precursor reprogramming provides a unique platform to investigate the developmental profile of FXS-associated phenotypes throughout neural precursor and neuron generation, at a temporal resolution not afforded by post-mortem tissue and in a patient-specific context not represented in rodent models. Direct reprogramming also circumvents the protracted culture times and low efficiency of current induced pluripotent stem cell strategies. Methods: We have developed a chemically modified mRNA (cmRNA) -based direct reprogramming protocol to generate dorsal forebrain precursors (hiDFPs) from FXS patient-derived fibroblasts, with subsequent differentiation to glutamatergic cortical neurons and astrocytes. Results: We observed differential expression of mature neuronal markers suggesting impaired neuronal development and maturation in FXS- hiDFP-derived neurons compared to controls. FXS- hiDFP-derived cortical neurons exhibited dendritic growth and arborization deficits characterized by reduced neurite length and branching consistent with impaired neuronal maturation. Furthermore, FXS- hiDFP-derived neurons exhibited a significant decrease in the density of pre- and post- synaptic proteins and reduced glutamate-induced calcium activity, suggesting impaired excitatory synapse development and functional maturation. We also observed a reduced yield of FXS- hiDFP-derived neurons with a significant increase in FXS-affected astrocytes. Discussion: This study represents the first reported derivation of FXS-affected cortical neurons following direct reprogramming of patient fibroblasts to dorsal forebrain precursors and subsequently neurons that recapitulate the key molecular hallmarks of FXS as it occurs in human tissue. We propose that direct to hiDFP reprogramming provides a unique platform for further study into the pathogenesis of FXS as well as the identification and screening of new drug targets for the treatment of FXS.

12.
Front Cell Neurosci ; 17: 1003188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794263

RESUMEN

Introduction: With the increase in aging populations around the world, the development of in vitro human cell models to study neurodegenerative disease is crucial. A major limitation in using induced pluripotent stem cell (hiPSC) technology to model diseases of aging is that reprogramming fibroblasts to a pluripotent stem cell state erases age-associated features. The resulting cells show behaviors of an embryonic stage exhibiting longer telomeres, reduced oxidative stress, and mitochondrial rejuvenation, as well as epigenetic modifications, loss of abnormal nuclear morphologies, and age-associated features. Methods: We have developed a protocol utilizing stable, non-immunogenic chemically modified mRNA (cmRNA) to convert adult human dermal fibroblasts (HDFs) to human induced dorsal forebrain precursor (hiDFP) cells, which can subsequently be differentiated into cortical neurons. Analyzing an array of aging biomarkers, we demonstrate for the first time the effect of direct-to-hiDFP reprogramming on cellular age. Results: We confirm direct-to-hiDFP reprogramming does not affect telomere length or the expression of key aging markers. However, while direct-to-hiDFP reprogramming does not affect senescence-associated ß-galactosidase activity, it enhances the level of mitochondrial reactive oxygen species and the amount of DNA methylation compared to HDFs. Interestingly, following neuronal differentiation of hiDFPs we observed an increase in cell soma size as well as neurite number, length, and branching with increasing donor age suggesting that neuronal morphology is altered with age. Discussion: We propose direct-to-hiDFP reprogramming provides a strategy for modeling age-associated neurodegenerative diseases allowing the persistence of age-associated signatures not seen in hiPSC-derived cultures, thereby facilitating our understanding of neurodegenerative disease and identification of therapeutic targets.

13.
Acta Biomater ; 158: 87-100, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640949

RESUMEN

Electrically modulated delivery of proteins provides an avenue to target local tissues specifically and tune the dose to the application. This approach prolongs and enhances activity at the target site whilst reducing off-target effects associated with systemic drug delivery. The work presented here explores an electrically active composite material comprising of a biocompatible hydrogel, gelatin methacryloyl (GelMA) and a conducting polymer, poly(3,4-ethylenedioxythiophene), generating a conducting polymer hydrogel. In this paper, the key characteristics of electroactivity, mechanical properties, and morphology are characterized using electrochemistry techniques, atomic force, and scanning electron microscopy. Cytocompatibility is established through exposure of human cells to the materials. By applying different electrical-stimuli, the short-term release profiles of a model protein can be controlled over 4 h, demonstrating tunable delivery patterns. This is followed by extended-release studies over 21 days which reveal a bimodal delivery mechanism influenced by both GelMA degradation and electrical stimulation events. This data demonstrates an electroactive and cytocompatible material suitable for the delivery of protein payloads over 3 weeks. This material is well suited for use as a treatment delivery platform in tissue engineering applications where targeted and spatio-temporal controlled delivery of therapeutic proteins is required. STATEMENT OF SIGNIFICANCE: Growth factor use in tissue engineering typically requires sustained and tunable delivery to generate optimal outcomes. While conducting polymer hydrogels (CPH) have been explored for the electrically responsive release of small bioactives, we report on a CPH capable of releasing a protein payload in response to electrical stimulus. The composite material combines the benefits of soft hydrogels acting as a drug reservoir and redox-active properties from the conducting polymer enabling electrical responsiveness. The CPH is able to sustain protein delivery over 3 weeks, with electrical stimulus used to modulate release. The described material is well suited as a treatment delivery platform to deliver large quantities of proteins in applications where spatio-temporal delivery patterns are paramount.


Asunto(s)
Hidrogeles , Polímeros , Humanos , Polímeros/química , Hidrogeles/química , Ingeniería de Tejidos/métodos , Sistemas de Liberación de Medicamentos , Electricidad , Gelatina/química
14.
Hippocampus ; 22(7): 1517-27, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22147523

RESUMEN

Amyloid precursor protein (APP) is an integral membrane glycoprotein present at high levels in nerve cells. Two soluble secreted forms, sAPPα and sAPPß, are processed from APP by two mutually exclusive proteolytic pathways. sAPPα shows a range of neuroprotective and growth factor properties, including reduction of neuronal injury and improvement in memory performance, in contrast to the generally less potent sAPPß. In addition, sAPPα has been shown to increase the proliferation of both embryonic neural stem cells and neural progenitor cells (NPCs) derived from the subventricular zone (SVZ) of the adult brain. However, an effect of sAPPα (or sAPPß) on adult hippocampal progenitor cell proliferation and differentiation has not previously been observed. In this study, we examined the effect of both the α- and ß-cleaved ectodomains of sAPP on adult NPCs isolated from the subgranular zone (SGZ) of the rat hippocampus in the presence or absence of depolarizing conditions. Assays were performed to examine the effect of sAPPα and sAPPß on SGZ-derived adult NPC proliferation in parallel with SVZ-derived cells and on differentiation with SGZ-derived cells. We observed both sAPPα and sAPPß increased the proliferation of SGZ-derived NPCs in vitro. Further, treatment of SGZ-derived NPCs with either sAPPα or sAPPß increased the number of cells expressing the astrocytic marker GFAP and promoted cell survival. The effect on differential fate was observed in both the presence and absence of depolarizing conditions. Thus, both sAPPα and sAPPß exert a complex range of effects on SGZ-derived adult NPCs, including increasing NPC proliferation, maintaining cell viability, yet promoting glial over neuronal differentiation. These findings provide the first direct support for the secreted forms of APP regulating SGZ-derived NPCs, and raise the possibility some or all of the effects may have therapeutic benefit in models of neurological disease.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Precursor de Proteína beta-Amiloide/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular , Hipocampo/citología , Neuronas/fisiología , Células Madre Adultas/fisiología , Análisis de Varianza , Animales , Bromodesoxiuridina/metabolismo , Diferenciación Celular/fisiología , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Humanos , Técnicas In Vitro , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Factores de Tiempo
15.
Mol Cell Neurosci ; 47(1): 53-60, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21397028

RESUMEN

Compensatory replacement of neurons by endogenous subventricular zone (SVZ)-derived neural precursor cells has been demonstrated in the adult brain following striatal cell loss. Such cell replacement is associated with increased SVZ cell proliferation and neuroblast expansion in the rostral migratory stream (RMS). SVZ-derived neural precursor cells co-express multiple transcription factors involved in lineage restriction and cell fate determination. We propose that compensatory neurogenesis in response to striatal cell loss will alter the temporal expression of transcription factors in discrete populations of SVZ-derived neural precursor cells. We therefore examined the expression of Mash1, Dlx2, Pax6 and Olig2 in SVZ-derived neural precursor cell populations across a range of times following quinolinic acid (QA) induced striatal cell death. We have identified a heterogeneous population of SVZ-derived neural precursor cells that respond independently to striatal cell loss. In both the anterior SVZ (aSVZ) and RMS we observed an increase in a sub-population of Dlx2+ transit amplifying precursor (TAP) cells and neuroblasts following QA lesioning when compared to controls. Subsequently, the number of Pax6+ TAPs and neuroblasts in the QA lesioned aSVZ and RMS was also increased. Olig2 expression was not however altered in response to QA-induced cell loss. Our results suggest Dlx2 and Pax6 may play a prominent role in directing neural precursor cell proliferation and neuroblast generation following striatal cell loss. Selective alteration of specific transcription factors in the SVZ and during migration through the RMS in response to cell loss may predetermine the subsequent generation of specific neuronal subclasses for endogenous replacement.


Asunto(s)
Cuerpo Estriado/citología , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/patología , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cuerpo Estriado/efectos de los fármacos , Proteínas de Homeodominio/genética , Humanos , Masculino , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Factor de Transcripción PAX6 , Ácido Quinolínico/farmacología , Ratas , Ratas Wistar , Factores de Transcripción/genética
16.
Mol Cell Neurosci ; 47(3): 203-14, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21569851

RESUMEN

In the dentate gyrus of the hippocampus new neurons are born from precursor cells throughout development and into adulthood. These newborn neurons hold significant potential for self-repair of brain damage caused by neurodegenerative disease. However, the mechanism by which newborn neurons integrate into the brain is not understood due to a lack of knowledge of the molecular and functional characteristics of the synapses formed by newborn neurons. Here we report that dissociated hippocampal cultures continue to produce new granule cells in vitro that fire action potentials and become synaptically integrated into the existing network of mature hippocampal neurons. Quantification of the expression of synaptic proteins at newborn and mature granule cell synapses revealed synapse development onto newborn neurons occurs sequentially with initial synaptic contacts evident from 6 days after cell birth. These data also showed that the dendrites of newborn neurons have a high density of Piccolo and Bassoon puncta on them and therefore have a high potential to be integrated into the neuronal network through new synaptic connections. Electrophysiological recordings from newborn neurons reveal these synapses are functional within 10 days of cell birth. GABAergic input synapses were found to mature faster in newborn neurons than glutamatergic synapses where sequential recruitment of postsynaptic glutamate receptors occurred. Group I metabotropic glutamate receptors (mGluR1/5) were present at higher levels compared with ionotropic glutamate receptors (NMDA and AMPA receptors), suggesting that metabotropic and ionotropic receptors play differential roles at glutamatergic synapses in the integration and the maturation of newborn neurons. These data show that dissociated hippocampal cultures can provide a useful model system in which to study the integration of newborn neurons into existing neuronal circuits to increase our understanding of how the function of newborn neuron synapses could contribute to restoring damaged neuronal networks.


Asunto(s)
Hipocampo/fisiología , Red Nerviosa/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Dendritas/fisiología , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Potenciales de la Membrana/fisiología , Red Nerviosa/citología , Neuronas/citología , Ratas , Receptores de GABA/metabolismo , Receptores de Glutamato/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
17.
Heliyon ; 8(9): e10819, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36193519

RESUMEN

Organotypic brain slice cultures are a useful tool to study neurological disease as they provide a 3-dimensional system which more closely recapitulates the in vivo cytoarchitectural complexity than standard 2-dimensional in vitro cell cultures. Building on our previously developed rat brain slice culture protocol, we have extended our findings to develop ex vivo excitotoxic lesion models by treatment of rat sagittal organotypic slices with AMPA or quinolinic acid (QA). We show that treatment of rat sagittal cortico-striatal organotypic slices with 8µM AMPA or 50µM QA causes striatal cell loss with a reduction in neuronal nuclei (NeuN)+ cells and an increase in ethidium homodimer-1 (EthD-1)+ dead cells compared to untreated slices. More specifically, following treatment with QA, we observed a reduction in medium spiny neuron DARPP32 + cells in the striatum and cortex of slices. Treatment of the slices with AMPA does not alter glial fibrillary acidic protein (GFAP) expression, while we observed an acute increase in GFAP expression 1-week post-QA exposure both in the cortex and striatum of slices. This recapitulates the excitotoxic and striatal degeneration observed in rat AMPA and QA lesion models in vivo. Our slice culture platform provides an advance over other systems with the ability to generate acute AMPA- and QA-induced striatal excitotoxicity in sagittal cortico-striatal slices which can be cultured long-term for at least 4 weeks. Our ex vivo organotypic slice culture system provides a long-term cellular platform to model neuronal excitotoxicity, with QA specifically modelling Huntington's disease. This will allow for mechanistic studies of excitotoxicity and neuroprotection, as well as the development and testing of novel therapeutic strategies with reduced cost and ease of manipulation prior to in vivo experimentation.

18.
Stem Cells Dev ; 31(3-4): 78-89, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34963331

RESUMEN

The development of human cell-based platforms for disease modeling, drug discovery, and regenerative therapy relies on robust and practical methods to derive high yields of relevant neuronal subtypes. Direct reprogramming strategies have sought to provide a means of deriving human neurons that mitigate the low conversion efficiencies, and protracted timing of human embryonic stem cell and induced pluripotent stem cell-derived neuron specification in vitro. However, few studies have demonstrated the direct conversion of adult human fibroblasts into multipotent neural precursors with the capacity to differentiate into cortical neurons with high efficiency. In this study, we demonstrate a reprogramming strategy using chemically modified mRNA encoding the proneural genes SOX2 and PAX6 coupled with small molecule supplementation to enhance the derivation of human-induced dorsal forebrain precursors directly from adult human dermal fibroblasts (aHDFs). Through transcriptional and phenotypic analysis of lineage-specific precursor and cortical neuron markers, we have demonstrated that this combined strategy significantly enhances the direct derivation of dorsal forebrain precursors from aHDFs, which, after timely exposure to defined differentiation media, gives rise to high yields of functional glutamatergic neurons. We propose that this combined strategy provides a highly tractable and efficient human cell-based platform for disease modeling and drug discovery.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Adulto , Diferenciación Celular , Reprogramación Celular/genética , Fibroblastos , Humanos , Neuronas , Prosencéfalo
19.
Cell Signal ; 99: 110449, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36031090

RESUMEN

Multiple sclerosis is a disease characterised by demyelination of axons in the central nervous system. The atypical antipsychotic drug clozapine has been shown to attenuate disease severity in experimental autoimmune encephalomyelitis (EAE), a mouse model that is useful for the study of multiple sclerosis. However, the mechanism of action by which clozapine reduces disease in EAE is poorly understood. To better understand how clozapine exerts its protective effects, we investigated the underlying signalling pathways by which clozapine may reduce immune cell migration by evaluating chemokine and dopamine receptor-associated signalling pathways. We found that clozapine inhibits migration of immune cells by reducing chemokine production in microglia cells by targeting NF-κB phosphorylation and promoting an anti-inflammatory milieu. Furthermore, clozapine directly targets immune cell migration by changing Ca2+ levels within immune cells and reduces the phosphorylation of signalling protein AKT. Linking these pathways to the antagonising effect of clozapine on dopamine and serotonin receptors, we provide insight into how clozapine alters immune cells migration by directly targeting the underlying migration-associated pathways.


Asunto(s)
Antipsicóticos , Clozapina , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Antiinflamatorios/uso terapéutico , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Quimiocinas , Clozapina/farmacología , Clozapina/uso terapéutico , Dopamina , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Dopaminérgicos/metabolismo
20.
Biomed Mater ; 17(5)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35654031

RESUMEN

Three-dimensional bioprinting continues to advance as an attractive biofabrication technique to employ cell-laden hydrogel scaffolds in the creation of precise, user-defined constructs that can recapitulate the native tissue environment. Development and characterisation of new bioinks to expand the existing library helps to open avenues that can support a diversity of tissue engineering purposes and fulfil requirements in terms of both printability and supporting cell attachment. In this paper, we report the development and characterisation of agarose-gelatin (AG-Gel) hydrogel blends as a bioink for extrusion-based bioprinting. Four different AG-Gel hydrogel blend formulations with varying gelatin concentration were systematically characterised to evaluate suitability as a potential bioink for extrusion-based bioprinting. Additionally, autoclave and filter sterilisation methods were compared to evaluate their effect on bioink properties. Finally, the ability of the AG-Gel bioink to support cell viability and culture after printing was evaluated using SH-SY5Y cells encapsulated in bioprinted droplets of the AG-Gel. All bioink formulations demonstrate rheological, mechanical and swelling properties suitable for bioprinting and cell encapsulation. Autoclave sterilisation significantly affected the rheological properties of the AG-Gel bioinks compared to filter sterilisation. SH-SY5Y cells printed and differentiated into neuronal-like cells using the developed AG-Gel bioinks demonstrated high viability (>90%) after 23 d in culture. This study demonstrates the properties of AG-Gel as a printable and biocompatible material applicable for use as a bioink.


Asunto(s)
Bioimpresión , Neuroblastoma , Bioimpresión/métodos , Encapsulación Celular , Gelatina , Humanos , Hidrogeles , Impresión Tridimensional , Sefarosa , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA