Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502769

RESUMEN

Since the appearance of the COVID-19 pandemic (at the end of 2019, Wuhan, China), the recognition of COVID-19 with medical imaging has become an active research topic for the machine learning and computer vision community. This paper is based on the results obtained from the 2021 COVID-19 SPGC challenge, which aims to classify volumetric CT scans into normal, COVID-19, or community-acquired pneumonia (Cap) classes. To this end, we proposed a deep-learning-based approach (CNR-IEMN) that consists of two main stages. In the first stage, we trained four deep learning architectures with a multi-tasks strategy for slice-level classification. In the second stage, we used the previously trained models with an XG-boost classifier to classify the whole CT scan into normal, COVID-19, or Cap classes. Our approach achieved a good result on the validation set, with an overall accuracy of 87.75% and 96.36%, 52.63%, and 95.83% sensitivities for COVID-19, Cap, and normal, respectively. On the other hand, our approach achieved fifth place on the three test datasets of SPGC in the COVID-19 challenge, where our approach achieved the best result for COVID-19 sensitivity. In addition, our approach achieved second place on two of the three testing sets.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Pandemias , SARS-CoV-2 , Tomografía Computarizada por Rayos X
2.
J Imaging ; 6(7)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34460655

RESUMEN

Knowing an accurate passengers attendance estimation on each metro car contributes to the safely coordination and sorting the crowd-passenger in each metro station. In this work we propose a multi-head Convolutional Neural Network (CNN) architecture trained to infer an estimation of passenger attendance in a metro car. The proposed network architecture consists of two main parts: a convolutional backbone, which extracts features over the whole input image, and a multi-head layers able to estimate a density map, needed to predict the number of people within the crowd image. The network performance is first evaluated on publicly available crowd counting datasets, including the ShanghaiTech part_A, ShanghaiTech part_B and UCF_CC_50, and then trained and tested on our dataset acquired in subway cars in Italy. In both cases a comparison is made against the most relevant and latest state of the art crowd counting architectures, showing that our proposed MH-MetroNet architecture outperforms in terms of Mean Absolute Error (MAE) and Mean Square Error (MSE) and passenger-crowd people number prediction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA