Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Prostate ; 80(1): 88-98, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31661167

RESUMEN

BACKGROUND: Prostate cancer (PCa) remains the second leading cause of cancer-related death among men. Taxanes, such as docetaxel and cabazitaxel are utilized in standard treatment regimens for chemotherapy naïve castration-resistant PCa. However, tumors often develop resistance to taxane chemotherapeutics, highlighting a need to identify additional therapeutic targets. Fatty acid-binding protein 5 (FABP5) is an intracellular lipid carrier whose expression is upregulated in metastatic PCa and increases cell growth, invasion, and tumor formation. Here, we assessed whether FABP5 inhibitors synergize with semi-synthetic taxanes to induce cytotoxicity in vitro and attenuate tumor growth in vivo. METHODS: PC3, DU-145, and 22Rv1 PCa cells were incubated with FABP5 inhibitors Stony Brook fatty acid-binding protein inhibitor 102 (SBFI-102) or SBFI-103 in the presence or absence of docetaxel or cabazitaxel, and cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay. Cytotoxicity of SBFI-102 and SBFI-103 was also evaluated in noncancerous cells. For the in vivo studies, PC3 cells were subcutaneously implanted into BALB/c nude mice, which were subsequently treated with FABP5 inhibitors, docetaxel, or a combination of both. RESULTS: SBFI-102 and SBFI-103 produced cytotoxicity in the PCa cells. Coincubation of the PCa cells with FABP5 inhibitors and docetaxel or cabazitaxel produced synergistic cytotoxic effects in vitro. Treatment of mice with FABP5 inhibitors reduced tumor growth and a combination of FABP5 inhibitors with a submaximal dose of docetaxel reduced tumor growth to a larger extent than treatment with each drug alone. CONCLUSIONS: FABP5 inhibitors increase the cytotoxic and tumor-suppressive effects of taxanes in PCa cells. The ability of these drugs to synergize could permit more efficacious antitumor activity while allowing for dosages of docetaxel or cabazitaxel to be lowered, potentially decreasing taxane-resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Docetaxel/farmacología , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Taxoides/farmacología , Animales , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Docetaxel/administración & dosificación , Sinergismo Farmacológico , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células PC-3 , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Taxoides/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
2.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106078

RESUMEN

The variant histone H2A.Z is inserted into nucleosomes immediately downstream of promoters and is important for transcription. The site-specific deposition of H2A.Z is catalyzed by SWR, a conserved chromatin remodeler with affinity for promoter-proximal nucleosome depleted regions (NDRs) and histone acetylation. By comparing the genomic distribution of H2A.Z in wild-type and SWR-deficient cells, we found that SWR is also responsible for depositing H2A.Z at thousands of non-canonical sites not directly linked to NDRs or histone acetylation. To understand the targeting mechanism of H2A.Z, we presented SWR with a library of nucleosomes isolated from yeast and characterized those preferred by SWR. We found that SWR prefers nucleosomes associated with intergenic over coding regions, especially when polyadenine tracks are present. Insertion of polyadenine sequences into recombinant nucleosomes near the H2A-H2B binding site stimulated the H2A.Z insertion activity of SWR. Therefore, the genome is encoded with information contributing to remodeler-mediated targeting of H2A.Z.

3.
Sci Rep ; 9(1): 18944, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831821

RESUMEN

Prostate cancer (PCa) is defined by dysregulated lipid signaling and is characterized by upregulation of lipid metabolism-related genes including fatty acid binding protein 5 (FABP5), fatty acid synthase (FASN), and monoacylglycerol lipase (MAGL). FASN and MAGL are enzymes that generate cellular fatty acid pools while FABP5 is an intracellular chaperone that delivers fatty acids to nuclear receptors to enhance PCa metastasis. Since FABP5, FASN, and MAGL have been independently implicated in PCa progression, we hypothesized that FABP5 represents a central mechanism linking cytosolic lipid metabolism to pro-metastatic nuclear receptor signaling. Here, we show that the abilities of FASN and MAGL to promote nuclear receptor activation and PCa metastasis are critically dependent upon co-expression of FABP5 in vitro and in vivo. Our findings position FABP5 as a key driver of lipid-mediated metastasis and suggest that disruption of lipid signaling via FABP5 inhibition may constitute a new avenue to treat metastatic PCa.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Células PC-3 , Neoplasias de la Próstata/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA