Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8016): 401-411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811727

RESUMEN

Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.


Asunto(s)
Hominidae , Cromosoma X , Cromosoma Y , Animales , Femenino , Masculino , Gorilla gorilla/genética , Hominidae/genética , Hominidae/clasificación , Hylobatidae/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Pongo pygmaeus/genética , Telómero/genética , Cromosoma X/genética , Cromosoma Y/genética , Evolución Molecular , Variaciones en el Número de Copia de ADN/genética , Humanos , Especies en Peligro de Extinción , Estándares de Referencia
2.
Nature ; 616(7957): 543-552, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046093

RESUMEN

Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.


Asunto(s)
Evolución Molecular , Genoma Humano , Neoplasias Pulmonares , Metástasis de la Neoplasia , Transcriptoma , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Genómica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Metástasis de la Neoplasia/genética , Transcriptoma/genética , Alelos , Aprendizaje Automático , Genoma Humano/genética
3.
Nature ; 616(7957): 534-542, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046095

RESUMEN

Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Evolución Clonal , Células Clonales , Evolución Molecular , Neoplasias Pulmonares , Metástasis de la Neoplasia , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Células Clonales/patología , Estudios de Cohortes , Progresión de la Enfermedad , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia/diagnóstico , Metástasis de la Neoplasia/patología , Recurrencia Local de Neoplasia
4.
Nature ; 616(7957): 525-533, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046096

RESUMEN

Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/etiología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/etiología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Recurrencia Local de Neoplasia/genética , Filogenia , Resultado del Tratamiento , Fumar/genética , Fumar/fisiopatología , Mutagénesis , Variaciones en el Número de Copia de ADN
5.
Nature ; 616(7957): 563-573, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046094

RESUMEN

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Asunto(s)
Retrovirus Endógenos , Inmunoterapia , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/virología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/virología , Modelos Animales de Enfermedad , Retrovirus Endógenos/inmunología , Inmunoterapia/métodos , Pulmón/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virología , Microambiente Tumoral , Linfocitos B/inmunología , Estudios de Cohortes , Anticuerpos/inmunología , Anticuerpos/uso terapéutico
6.
Nature ; 616(7957): 553-562, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37055640

RESUMEN

Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Mutación , Metástasis de la Neoplasia , Carcinoma Pulmonar de Células Pequeñas , Humanos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Estudios de Cohortes , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia/diagnóstico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Filogenia , Carcinoma Pulmonar de Células Pequeñas/patología , Biopsia Líquida
7.
Proc Natl Acad Sci U S A ; 121(28): e2320796121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959036

RESUMEN

Phoresy is an interspecies interaction that facilitates spatial dispersal by attaching to a more mobile species. Hitchhiking species have evolved specific traits for physical contact and successful phoresy, but the regulatory mechanisms involved in such traits and their evolution are largely unexplored. The nematode Caenorhabditis elegans displays a hitchhiking behavior known as nictation during its stress-induced developmental stage. Dauer-specific nictation behavior has an important role in natural C. elegans populations, which experience boom-and-bust population dynamics. In this study, we investigated the nictation behavior of 137 wild C. elegans strains sampled throughout the world. We identified species-wide natural variation in nictation and performed a genome-wide association mapping. We show that the variants in the promoter of nta-1, encoding a putative steroidogenic enzyme, underlie differences in nictation. This difference is due to the changes in nta-1 expression in glial cells, which implies that glial steroid metabolism regulates phoretic behavior. Population genetic analysis and geographic distribution patterns suggest that balancing selection maintained two nta-1 haplotypes that existed in ancestral C. elegans populations. Our findings contribute to further understanding of the molecular mechanism of species interaction and the maintenance of genetic diversity within natural populations.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neuroglía , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuroglía/metabolismo , Estudio de Asociación del Genoma Completo , Conducta Animal/fisiología , Variación Genética , Regiones Promotoras Genéticas/genética , Esteroides/metabolismo , Esteroides/biosíntesis
9.
Genome Res ; 29(6): 1023-1035, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31123081

RESUMEN

Long-read sequencing technologies have contributed greatly to comparative genomics among species and can also be applied to study genomics within a species. In this study, to determine how substantial genomic changes are generated and tolerated within a species, we sequenced a C. elegans strain, CB4856, which is one of the most genetically divergent strains compared to the N2 reference strain. For this comparison, we used the Pacific Biosciences (PacBio) RSII platform (80×, N50 read length 11.8 kb) and generated de novo genome assembly to the level of pseudochromosomes containing 76 contigs (N50 contig = 2.8 Mb). We identified structural variations that affected as many as 2694 genes, most of which are at chromosome arms. Subtelomeric regions contained the most extensive genomic rearrangements, which even created new subtelomeres in some cases. The subtelomere structure of Chromosome VR implies that ancestral telomere damage was repaired by alternative lengthening of telomeres even in the presence of a functional telomerase gene and that a new subtelomere was formed by break-induced replication. Our study demonstrates that substantial genomic changes including structural variations and new subtelomeres can be tolerated within a species, and that these changes may accumulate genetic diversity within a species.


Asunto(s)
Adaptación Biológica/genética , Caenorhabditis elegans/genética , Variación Genética , Telómero/genética , Animales , Estructuras Cromosómicas , Biología Computacional/métodos , Genoma de los Helmintos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie
10.
Mol Ecol ; 31(8): 2327-2347, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35167162

RESUMEN

The nematode Caenorhabditis elegans is among the most widely studied organisms, but relatively little is known about its natural ecology. Genetic diversity is low across much of the globe but high in the Hawaiian Islands and across the Pacific Rim. To characterize the niche and genetic diversity of C. elegans on the Hawaiian Islands and to explore how genetic diversity might be influenced by local adaptation, we repeatedly sampled nematodes over a three-year period, measured various environmental parameters at each sampling site, and whole-genome sequenced the C. elegans isolates that we identified. We found that the typical Hawaiian C. elegans niche comprises moderately moist native forests at high elevations (500-1,500 m) where ambient air temperatures are cool (15-20°C). Compared to other Caenorhabditis species found on the Hawaiian Islands (e.g., Caenorhabditis briggsae and Caenorhabditis tropicalis), we found that C. elegans were enriched in native habitats. We measured levels of genetic diversity and differentiation among Hawaiian C. elegans and found evidence of seven genetically distinct groups distributed across the islands. Then, we scanned these genomes for signatures of local adaptation and identified 18 distinct regions that overlap with hyper-divergent regions, which may be maintained by balancing selection and are enriched for genes related to environmental sensing, xenobiotic detoxification, and pathogen resistance. These results provide strong evidence of local adaptation among Hawaiian C. elegans and contribute to our understanding of the forces that shape genetic diversity on the most remote volcanic archipelago in the world.


Asunto(s)
Caenorhabditis elegans , Caenorhabditis , Animales , Caenorhabditis/genética , Variación Genética/genética , Hawaii , Islas
11.
PLoS Genet ; 13(7): e1006891, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28700616

RESUMEN

Many chemotherapeutic drugs are differentially effective from one patient to the next. Understanding the causes of this variability is a critical step towards the development of personalized treatments and improvements to existing medications. Here, we investigate sensitivity to a group of anti-neoplastic drugs that target topoisomerase II using the model organism Caenorhabditis elegans. We show that wild strains of C. elegans vary in their sensitivity to these drugs, and we use an unbiased genetic approach to demonstrate that this natural variation is explained by a methionine-to-glutamine substitution in topoisomerase II (TOP-2). The presence of a non-polar methionine at this residue increases hydrophobic interactions between TOP-2 and its poison etoposide, as compared to a polar glutamine. We hypothesize that this stabilizing interaction results in increased genomic instability in strains that contain a methionine residue. The residue affected by this substitution is conserved from yeast to humans and is one of the few differences between the two human topoisomerase II isoforms (methionine in hTOPIIα and glutamine in hTOPIIß). We go on to show that this amino acid difference between the two human topoisomerase isoforms influences cytotoxicity of topoisomerase II poisons in human cell lines. These results explain why hTOPIIα and hTOPIIß are differentially affected by various poisons and demonstrate the utility of C. elegans in understanding the genetics of drug responses.


Asunto(s)
Sustitución de Aminoácidos/genética , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Medicina de Precisión , Animales , Antineoplásicos/administración & dosificación , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Humanos , Saccharomyces cerevisiae/genética , Inhibidores de Topoisomerasa II/administración & dosificación
12.
Nucleic Acids Res ; 45(D1): D650-D657, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27701074

RESUMEN

Studies in model organisms have yielded considerable insights into the etiology of disease and our understanding of evolutionary processes. Caenorhabditis elegans is among the most powerful model organisms used to understand biology. However, C. elegans is not used as extensively as other model organisms to investigate how natural variation shapes traits, especially through the use of genome-wide association (GWA) analyses. Here, we introduce a new platform, the C. elegans Natural Diversity Resource (CeNDR) to enable statistical genetics and genomics studies of C. elegans and to connect the results to human disease. CeNDR provides the research community with wild strains, genome-wide sequence and variant data for every strain, and a GWA mapping portal for studying natural variation in C. elegans Additionally, researchers outside of the C. elegans community can benefit from public mappings and integrated tools for comparative analyses. CeNDR uses several databases that are continually updated through the addition of new strains, sequencing data, and association mapping results. The CeNDR data are accessible through a freely available web portal located at http://www.elegansvariation.org or through an application programming interface.


Asunto(s)
Biodiversidad , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/genética , Bases de Datos Genéticas , Animales , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Programas Informáticos , Navegador Web
13.
Bioinformatics ; 33(10): 1581-1582, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28093408

RESUMEN

SUMMARY: The variant call format (VCF) is a popular standard for storing genetic variation data. As a result, a large collection of tools has been developed that perform diverse analyses using VCF files. However, some tasks common to statistical and population geneticists have not been created yet. To streamline these types of analyses, we created novel tools that analyze or annotate VCF files and organized these tools into a command-line based utility named VCF-kit. VCF-kit adds essential utilities to process and analyze VCF files, including primer generation for variant validation, dendrogram production, genotype imputation from sequence data in linkage studies, and additional tools. AVAILABILITY AND IMPLEMENTATION: https://github.com/AndersenLab/VCF-kit. CONTACT: erik.andersen@northwestern.edu.


Asunto(s)
Variación Genética , Genómica/métodos , Almacenamiento y Recuperación de la Información/métodos , Programas Informáticos , Análisis de Secuencia de ADN/métodos
14.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585974

RESUMEN

Most current studies rely on short-read sequencing to detect somatic structural variation (SV) in cancer genomes. Long-read sequencing offers the advantage of better mappability and long-range phasing, which results in substantial improvements in germline SV detection. However, current long-read SV detection methods do not generalize well to the analysis of somatic SVs in tumor genomes with complex rearrangements, heterogeneity, and aneuploidy. Here, we present Severus: a method for the accurate detection of different types of somatic SVs using a phased breakpoint graph approach. To benchmark various short- and long-read SV detection methods, we sequenced five tumor/normal cell line pairs with Illumina, Nanopore, and PacBio sequencing platforms; on this benchmark Severus showed the highest F1 scores (harmonic mean of the precision and recall) as compared to long-read and short-read methods. We then applied Severus to three clinical cases of pediatric cancer, demonstrating concordance with known genetic findings as well as revealing clinically relevant cryptic rearrangements missed by standard genomic panels.

15.
Nat Commun ; 15(1): 4653, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821942

RESUMEN

Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Heterogeneidad Genética , Neoplasias Pulmonares , Ratones Endogámicos NOD , Ratones SCID , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Animales , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Femenino , Secuenciación del Exoma , Genómica/métodos , Masculino , Ensayos Antitumor por Modelo de Xenoinjerto , Xenoinjertos , Modelos Animales de Enfermedad , Anciano , Persona de Mediana Edad
16.
Cureus ; 15(5): e39504, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37366440

RESUMEN

Toxic epidermal necrolysis (TEN), also known as Lyell's syndrome, is a severe episodic mucocutaneous reaction that is usually brought on by oral medications and/or sporadically by infections. We report a case of a 19-year-old male with the presenting complaint of generalized skin blistering over the previous seven days at the dermatology outpatient clinic. The patient has had epilepsy since he was 10 years old. Due to an upper respiratory tract illness, a local healthcare facility recommended oral levofloxacin to him seven days ago. Levofloxacin-induced toxic epidermal necrolysis (TEN) was suspected based on the patient's medical history, physical examination, and research. On the basis of histological investigations and clinical correlation, the diagnosis of TEN was determined. The mainstay of treatment after diagnosis was made was supportive care. The best methods for treating TEN involve stopping any potential causal agents and providing supportive care. The patient received care in the intensive care unit.

17.
Cureus ; 15(7): e41509, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37551252

RESUMEN

Gastrointestinal neuroectodermal tumors (GNETs) are extremely rare and intriguing malignancies originating from neural crest cells in the digestive tract. The digestive tract's neural crest cells can give rise to incredibly unusual and interesting gastrointestinal neuroectodermal tumors (GNETs). GNETs present considerable hurdles in diagnosis and management because of their rarity and varied expression. In this case report, a 45-year-old male patient is described who had signs of GNET, such as exhaustion, weight loss, and abdominal pain. A 7-cm jejunum tumor and related thickening of the gut wall were discovered using imaging investigations. The diagnosis of malignant GNET was confirmed by surgical resection, and adjuvant treatment was given. A recurring tumor required a second surgical procedure despite an initial disease-free period. The report emphasizes the difficulties involved in the diagnosis, treatment, and long-term effects of GNETs. The rarity of GNETs necessitates the development of standardized treatment protocols as well as additional research to enhance diagnostic precision and explore novel therapeutic approaches for this aggressive malignancy.

18.
Bioinform Adv ; 3(1): vbad062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416509

RESUMEN

Summary: RNA sequencing (RNA-seq) can be applied to diverse tasks including quantifying gene expression, discovering quantitative trait loci and identifying gene fusion events. Although RNA-seq can detect germline variants, the complexities of variable transcript abundance, target capture and amplification introduce challenging sources of error. Here, we extend DeepVariant, a deep-learning-based variant caller, to learn and account for the unique challenges presented by RNA-seq data. Our DeepVariant RNA-seq model produces highly accurate variant calls from RNA-sequencing data, and outperforms existing approaches such as Platypus and GATK. We examine factors that influence accuracy, how our model addresses RNA editing events and how additional thresholding can be used to facilitate our models' use in a production pipeline. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

19.
Cureus ; 15(8): e44304, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37664362

RESUMEN

This comprehensive narrative review delves into the intricate interplay between diet and inflammatory bowel disease (IBD), shedding light on the potential impact of dietary interventions in disease management. By analyzing nutritional interventions, risks, challenges, and future perspectives, this review serves as a vital resource for clinicians, researchers, and patients alike. The amalgamation of evidence underscores the significance of customizing dietary strategies for individual patients, considering disease phenotype and cultural factors. Through an exploration of dietary components' effects on IBD, including exclusive enteral nutrition and omega-3 fatty acids, this review offers pragmatic implementation advice and outlines avenues for further research. Bridging the gap between research findings and clinical applications, the review facilitates informed decision-making and patient-centric care. In the face of escalating IBD prevalence, this review emerges as an indispensable guide for healthcare professionals, empowering them to navigate the complexities of dietary management while enabling patients to actively participate in their care trajectory. Ultimately, this narrative review advances the understanding of diet's pivotal role in IBD management, fostering a more integrated approach to patient care and paving the way for improved research and policy initiatives in the field of inflammatory bowel diseases.

20.
Nat Biotechnol ; 41(2): 232-238, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36050551

RESUMEN

Circular consensus sequencing with Pacific Biosciences (PacBio) technology generates long (10-25 kilobases), accurate 'HiFi' reads by combining serial observations of a DNA molecule into a consensus sequence. The standard approach to consensus generation, pbccs, uses a hidden Markov model. We introduce DeepConsensus, which uses an alignment-based loss to train a gap-aware transformer-encoder for sequence correction. Compared to pbccs, DeepConsensus reduces read errors by 42%. This increases the yield of PacBio HiFi reads at Q20 by 9%, at Q30 by 27% and at Q40 by 90%. With two SMRT Cells of HG003, reads from DeepConsensus improve hifiasm assembly contiguity (NG50 4.9 megabases (Mb) to 17.2 Mb), increase gene completeness (94% to 97%), reduce the false gene duplication rate (1.1% to 0.5%), improve assembly base accuracy (Q43 to Q45) and reduce variant-calling errors by 24%. DeepConsensus models could be trained to the general problem of analyzing the alignment of other types of sequences, such as unique molecular identifiers or genome assemblies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA