Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Angew Chem Int Ed Engl ; 63(18): e202400837, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38446007

RESUMEN

Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100 mAh g-1 is achieved with fast Mg2+ diffusion of 7.2 × ${\times }$ 10-11-4 × ${\times }$ 10-14 cm2 s-1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2- site; enabled by reversible cleavage of S-S bonds, identified by X-ray photoelectron and X-ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred.

2.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834224

RESUMEN

Using the colloidal method, attempts were made to deposit Au NPs on seven different material supports (TiO2, α and γ-Al2O3, HFeO2, CeO2, C, and SiO2). The deposition between 0.8 and 1 wt% of Au NPs can be generally achieved, apart for SiO2 (no deposition) and α-alumina (0.3 wt%). The resultant sizes of the Au NPs were dependent on the nature as well as the surface area of the support. The catalytic activity and selectivity of the supported Au catalysts were then compared in the alkylation of aniline by benzyl alcohol. Correlations were made between the nature of the support, the size of the Au NP, and the H-binding energy. A minimum H-binding energy of 1100 µV K-1 was found to be necessary for high selectivity for the secondary amine. Comparisons of the TEM images of the pre- and post-reaction catalysts also revealed the extent of Au NP agglomeration under the reaction conditions.


Asunto(s)
Alcohol Bencilo , Dióxido de Silicio , Óxido de Aluminio , Compuestos de Anilina , Alquilación
3.
Phys Chem Chem Phys ; 22(32): 17814-17823, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32582898

RESUMEN

This study presents the application of X-ray diffraction computed tomography for the first time to analyze the crystal dimensions of LiNi0.33Mn0.33Co0.33O2 electrodes cycled to 4.2 and 4.7 V in full cells with graphite as negative electrodes at 1 µm spatial resolution to determine the change in unit cell dimensions as a result of electrochemical cycling. The nature of the technique permits the spatial localization of the diffraction information in 3D and mapping of heterogeneities from the electrode to the particle level. An overall decrease of 0.4% and 0.6% was observed for the unit cell volume after 100 cycles for the electrodes cycled to 4.2 and 4.7 V. Additionally, focused ion beam-scanning electron microscope cross-sections indicate extensive particle cracking as a function of upper cut-off voltage, further confirming that severe cycling stresses exacerbate degradation. Finally, the technique facilitates the detection of parts of the electrode that have inhomogeneous lattice parameters that deviate from the bulk of the sample, further highlighting the effectiveness of the technique as a diagnostic tool, bridging the gap between crystal structure and electrochemical performance.

4.
J Am Chem Soc ; 141(50): 19616-19624, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31747756

RESUMEN

It is well-established that the inclusion of small atomic species such as boron (B) in powder metal catalysts can subtly modify catalytic properties, and the associated changes in the metal lattice imply that the B atoms are located in the interstitial sites. However, there is no compelling evidence for the occurrence of interstitial B atoms, and there is a concomitant lack of detailed structural information describing the nature of this occupancy and its effects on the metal host. In this work, we use an innovative combination of high-resolution 11B magic-angle-spinning (MAS) and 105Pd static solid-state NMR nuclear magnetic resonance (NMR), synchrotron X-ray diffraction (SXRD), in situ X-ray pair distribution function (XPDF), scanning transmission electron microscopy-annular dark field imaging (STEM-ADF), electron ptychography, and electron energy loss spectroscopy (EELS) to investigate the B atom positions, properties, and structural modifications to the palladium lattice of an industrial type interstitial boron doped palladium nanoparticle catalyst system (Pd-intB/C NPs). In this study, we report that upon B incorporation into the Pd lattice, the overall face centered cubic (FCC) lattice is maintained; however, short-range disorder is introduced. The 105Pd static solid-state NMR illustrates how different types (and levels) of structural strain and disorder are introduced in the nanoparticle history. These structural distortions can lead to the appearance of small amounts of local hexagonal close packed (HCP) structured material in localized regions. The short-range lattice tailoring of the Pd framework to accommodate interstitial B dopants in the octahedral sites of the distorted FCC structure can be imaged by electron ptychography. This study describes new toolsets that enable the characterization of industrial metal nanocatalysts across length scales from macro- to microanalysis, which gives important guidance to the structure-activity relationship of the system.

5.
Chemistry ; 20(37): 11740-9, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25112862

RESUMEN

The anion-templated synthesis of three novel halogen-bonding 5-halo-1,2,3-triazolium axle containing [2]rotaxanes is described, and the effects of altering the nature of the halogen-bond donor atom together with the degree of inter-component preorganisation on the anion-recognition properties of the interlocked host investigated. The ability of the bromotriazolium motif to direct the halide-anion-templated assembly of interpenetrated [2]pseudorotaxanes was studied initially; bromide was found to be the most effective template. As a consequence, bromide anion templation was used to synthesise the first bromotriazolium axle containing [2]rotaxane, the anion-binding properties of which, determined by (1) H NMR spectroscopic titration experiments, revealed enhanced bromide and iodide recognition relative to a hydrogen-bonding protic triazolium rotaxane analogue. Two halogen-bonding [2]rotaxanes with bromo- and iodotriazolium motifs integrated into shortened axles designed to increase inter-component preorganisation were also synthesised. Anion (1) H NMR spectroscopic titration experiments demonstrated that these rotaxanes were able to bind halide anions even more strongly, with the iodotriazolium axle integrated rotaxane capable of recognising halides in aqueous solvent media. Importantly, these observations suggest that a halogen-bonding interlocked host binding domain, in combination with increased inter-component preorganisation, are requisite design features for a potent anion receptor.


Asunto(s)
Rotaxanos/química , Triazoles/química , Aniones/química , Hidrocarburos Halogenados/química , Enlace de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares
6.
J Am Chem Soc ; 134(2): 855-8, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22239232

RESUMEN

This Communication describes the synthesis of highly monodispersed 12 nm nickel nanocubes. The cubic shape was achieved by using trioctylphosphine and hexadecylamine surfactants under a reducing hydrogen atmosphere to favor thermodynamic growth and the stabilization of {100} facets. Varying the metal precursor to trioctylphosphine ratio was found to alter the nanoparticle size and shape from 5 nm spherical nanoparticles to 12 nm nanocubes. High-resolution transmission electron microscopy showed that the nanocubes are protected from further oxidation by a 1 nm NiO shell. Synchrotron-based X-ray diffraction techniques showed the nickel nanocubes order into [100] aligned arrays. Magnetic studies showed the nickel nanocubes have over 4 times enhancement in magnetic saturation compared to spherical superparamagnetic nickel nanoparticles.


Asunto(s)
Fenómenos Magnéticos , Nanoestructuras/química , Níquel/química , Microscopía Electrónica de Transmisión
7.
ChemistryOpen ; 9(6): 683-690, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32528790

RESUMEN

Metal nanoparticles (NPs) have physicochemical properties which are distinct from both the bulk and molecular metal species, and provide opportunities in fields such as catalysis and sensing. NPs typically require protection of their surface to impede aggregation, but these coatings can also block access to the surface which would be required to take advantage of their unusual properties. Here, we show that alkyl imidazoles can stabilise Pd, Pt, Au, and Ag NPs, and delineate the limits of their synthesis. These ligands provide an intermediate level of surface protection, for which we demonstrate proof-of-principle in catalysis and anion binding.

8.
ACS Appl Energy Mater ; 3(9): 8822-8832, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33015588

RESUMEN

Unstable cathode electrolyte interphase (CEI) formation increases degradation in high voltage Li-ion battery materials. Few techniques couple characterization of nano-scale CEI layers on the macroscale with in situ chemical characterization, and thus, information on how the underlying microstructure affects CEI formation is lost. Here, the process of CEI formation in a high voltage cathode material, LiCoPO4, has been investigated for the first time using helium ion microscopy (HIM) and in situ time-of-flight (ToF) secondary ion mass spectrometry (SIMS). The combination of HIM and Ne-ion ToF-SIMS has been used to correlate the cycle-dependent morphology of the CEI layer on LiCoPO4 with a local cathode microstructure, including position, thickness, and chemistry. HIM imaging identified partial dissolution of the CEI layer on discharge resulting in in-homogenous CEI coverage on larger LiCoPO4 agglomerates. Ne-ion ToF-SIMS characterization identified oxyfluorophosphates from HF attack by the electrolyte and a Li-rich surface region. Variable thickness of the CEI layer coupled with inactive Li on the surface of LiCoPO4 electrodes contributes to severe degradation over the course of 10 cycles. The HIM-SIMS technique has potential to further investigate the effect of microstructures on CEI formation in cathode materials or solid electrolyte interphase formation in anodes, thus aiding future electrode development.

9.
Chem Commun (Camb) ; (17): 2214-6, 2005 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-15856100

RESUMEN

A rare class of mixed-metal [2]catenane has been assembled via magic ring synthesis of dinuclear copper(II) and gold(III) dithiocarbamate macrocycles.


Asunto(s)
Catenanos/química , Cobre/química , Oro/química , Compuestos Organometálicos/síntesis química , Tiocarbamatos/química , Ciclización , Magnetismo , Estructura Molecular , Compuestos Organometálicos/química
10.
Nat Commun ; 5: 5787, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25523894

RESUMEN

Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.

11.
Chem Commun (Camb) ; 49(92): 10793-5, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24122037

RESUMEN

Four pyridine N-oxide axle containing [2]rotaxanes have been synthesised via an anion templated threading-followed-by-stoppering strategy and shown to be the first examples of neutral interlocked host systems capable of recognising halide anions in aqueous solvent mixtures.


Asunto(s)
Halógenos/análisis , Piridinas/química , Rotaxanos/química , Aniones/análisis , Estructura Molecular , Piridinas/síntesis química , Solventes/química , Agua/química
12.
Dalton Trans ; 42(5): 1385-93, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23138593

RESUMEN

The synthesis and characterisation of a series of new gold- and palladium-containing symmetrical imidazolium salts are described which display significant cation-dependent effects determined by the structure of the alkyl chains of the imidazolium motifs. Whereas direct reduction of the Pd salts can produce stable nanoparticles (NPs) coated by imidazolium salts, the addition of strong base to the Pd or Au salts before reduction gives stable NPs, potentially pacified by N-heterocyclic carbene units. The possibility of NP surface protection by metal-carbon bonds in these systems is investigated by spectroscopic, synthetic, and catalytic investigations, providing support for the hypothesis. Significantly, the catalytic activity of the NPs is not inhibited by the continued presence of the ligands.

13.
Chem Commun (Camb) ; 49(23): 2293-5, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23407752

RESUMEN

The dansyl fluorophore ligated to gold nanoparticles via imidazole and amine groups affords conjugates capable of detecting micromolar concentrations of the chemical warfare agent sulfur mustard by a fluorescence switching 'ON' displacement assay.


Asunto(s)
Sustancias para la Guerra Química/análisis , Colorantes Fluorescentes/química , Oro/química , Nanopartículas del Metal/química , Gas Mostaza/análisis , Fosfatidilcolinas/química , Espectrofotometría Ultravioleta , Aminas/química , Imidazoles/química
14.
Nat Chem ; 3(6): 478-83, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21602864

RESUMEN

Core@shell structured bimetallic nanoparticles are currently of immense interest due to their unique electronic, optical and catalytic properties. However, their synthesis is non-trivial. We report a new supramolecular route for the synthesis of core@shell nanoparticles, based on an anion coordination protocol--the first to function by binding the shell metal to the surface of the pre-formed primary metal core before reduction. The resultant gold/palladium and platinum/palladium core@shell nanoparticles have been characterized by aberration-corrected scanning transmission electron microscopy (as well as other techniques), giving striking atomic-resolution images of the core@shell architecture, and the unique catalytic properties of the structured nanoparticles have been demonstrated in a remarkable improvement of the selective production of industrially valuable chloroaniline from chloronitrobenzene.


Asunto(s)
Oro/química , Nanopartículas del Metal , Paladio/química , Platino (Metal)/química , Aniones , Catálisis , Microscopía Electrónica de Transmisión , Espectrofotometría Ultravioleta
15.
Chem Commun (Camb) ; 47(28): 7971-3, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21677987

RESUMEN

We report a novel preparation of a Pd nanocatalyst modified with subsurface C via blending a glucose precursor at the molecular level: the catalyst is demonstrated for the first time to be stereoselective in the hydrogenation of alkynes to cis-alkenes in the liquid phase.

16.
ACS Nano ; 4(1): 396-402, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20028103

RESUMEN

Palladium is widely used as a catalyst in pharmaceutical and chemical syntheses as well as in the reduction of harmful exhaust emissions. Therefore, the development of high performance palladium catalysts is an area of major concern. In this paper, we present the synthesis of highly branched palladium nanostructures in a simple solution phase reaction at room temperature. By varying the nature of the organic stabilizer system we demonstrate control over the reaction kinetics and hence the shape of the nanostructures. Investigations into the structural evolution of the nanostructures show that they form from multiply twinned face centered cubic (fcc) nanoparticle nuclei. Reaction kinetics then determine the resulting shape where ultrafast growth is shown to lead to the highly branched nanostructures. These results will contribute greatly to the understanding of complex nanoparticle growth from all fcc metals. The nanostructures then show excellent catalytic activity for the hydrogenation of nitrobenzene to aniline.

18.
ACS Nano ; 2(12): 2547-53, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19206291

RESUMEN

Bimetallic heterostructures are used as industrial catalysts for many important transformations. However, conventional catalysts are primarily prepared in cost-effective manners without much appreciation in metal size control and metal-metal interaction. By employing recent nanotechnology, Pt nanocrystals with tailored sizes can be decorated with Co atoms in a controlled manner in colloid solution as preformed nanocatalysts before they are applied on support materials. Thus, we show that the terminal CO hydrogenation can be achieved in high activity, while the undesirable hydrogenation of the CC group can be totally suppressed in the selective hydrogenation of alpha,beta-unsaturated aldehydes to unsaturated alcohols, when Co decorated Pt nanocrystals within a critical size range are used. This is achieved through blockage of unselective low coordination sites and the optimization in electronic influence of the Pt nanoparticle of appropriate size by the Co decoration. This work clearly demonstrates the advantage in engineering preformed nanoparticles via a bottom-up construction and illustrates that this route of catalyst design may lead to improved catalytic processes.


Asunto(s)
Aldehídos/metabolismo , Catálisis , Cobalto/química , Hidrogenación , Nanotecnología , Platino (Metal)/química , Aldehídos/química , Nanopartículas/ultraestructura
19.
Dalton Trans ; (15): 1459-72, 2007 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-17404645

RESUMEN

The dithiocarbamate (dtc) ligand has proved to be an extremely versatile and robust motif for metal-directed self-assembly. Its ease of formation and wide ranging coordination chemistry has led to the formation of an array of novel and complex supramolecular architectures. Well-defined structures such as macrocycles, cages, catenanes and nanodimensional assemblies can be generated using a variety of oligomeric dithiocarbamate constructs in combination with transition metals. Polymetallic assemblies containing appropriately designed host cavities have allowed the binding of cationic, anionic and neutral guest species to be investigated. The use of the dithiocarbamate ligand has recently expanded to stabilising gold nanoparticles and preparing multimetallic wires and arrays. This perspective highlights the considerable potential that this simple and versatile ligand has to offer.

20.
J Am Chem Soc ; 128(21): 6990-7002, 2006 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-16719479

RESUMEN

Polymetallic nanodimensional assemblies have been prepared via metal directed assembly of dithiocarbamate functionalized cavitand structural frameworks with late transition metals (Ni, Pd, Cu, Au, Zn, and Cd). The coordination geometry about the metal centers is shown to dictate the architecture adopted. X-ray crystallographic studies confirm that square planar coordination geometries result in "cagelike" octanuclear complexes, whereas square-based pyramidal metal geometries favor hexanuclear "molecular loop" structures. Both classes of complex are sterically and electronically complementary to the fullerenes (C(60) and C(70)). The strong binding of these guests occurred via favorable interactions with the sulfur atoms of multiple dithiocarbamate moieties of the hosts. In the case of the tetrameric copper(II) complexes, the lability of the copper(II)-dithiocarbamate bond enabled the fullerene guests to be encapsulated in the electron-rich cavity of the host, over time. The examination of the binding of fullerenes has been undertaken using spectroscopic and electrochemical methods, electrospray mass spectrometry, and molecular modeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA