RESUMEN
Fungi play essential roles in global health, ecology, and economy, but their thermal biology is relatively unexplored. Mushrooms, the fruiting body of mycelium, were previously noticed to be colder than surrounding air through evaporative cooling. Here, we confirm those observations using infrared thermography and report that this hypothermic state is also observed in mold and yeast colonies. The relatively colder temperature of yeasts and molds is also mediated via evaporative cooling and associated with the accumulation of condensed water droplets on plate lids above colonies. The colonies appear coldest at their center and the surrounding agar appears warmest near the colony edges. The analysis of cultivated Pleurotus ostreatus mushrooms revealed that the hypothermic feature of mushrooms can be observed throughout the whole fruiting process and at the level of mycelium. The mushroom's hymenium was coldest, and different areas of the mushroom appear to dissipate heat differently. We also constructed a mushroom-based air-cooling prototype system capable of passively reducing the temperature of a semiclosed compartment by approximately 10 °C in 25 min. These findings suggest that the fungal kingdom is characteristically cold. Since fungi make up approximately 2% of Earth's biomass, their evapotranspiration may contribute to cooler temperatures in local environments.
Asunto(s)
Agaricus , Pleurotus , Cuerpos Fructíferos de los HongosRESUMEN
Cryptococcus neoformans is a fungal pathogen that can cause life-threatening brain infections in immunocompromised individuals. Unlike other fungal pathogens, it possesses a protective polysaccharide capsule that is crucial for its virulence. During infections, Cryptococcus cells release copious amounts of extracellular polysaccharides (exo-PS) that interfere with host immune responses. Both exo-PS and capsular-PS play pivotal roles in Cryptococcus infections and serve as essential targets for disease diagnosis and vaccine development strategies. However, understanding their structure is complicated by their polydispersity, complexity, sensitivity to sample isolation and processing, and scarcity of methods capable of isolating and analyzing them while preserving their native structure. In this study, we employ small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) for the first time to investigate both fungal cell suspensions and extracellular polysaccharides in solution. Our data suggests that exo-PS in solution exhibits collapsed chain-like behavior and demonstrates mass fractal properties that indicate a relatively condensed pore structure in aqueous environments. This observation is also supported by scanning electron microscopy (SEM). The local structure of the polysaccharide is characterized as a rigid rod, with a length scale corresponding to 3-4 repeating units. This research not only unveils insights into exo-PS and capsular-PS structures but also demonstrates the potential of USANS for studying changes in cell dimensions and the promise of contrast variation in future neutron scattering studies.
Asunto(s)
Criptococosis , Cryptococcus neoformans , Humanos , Fractales , Polisacáridos/química , Criptococosis/microbiología , Microscopía Electrónica de RastreoRESUMEN
The polysaccharide capsule of fungal pathogen Cryptococcus neoformans is a critical virulence factor that has historically evaded complete characterization. Cryptococcal polysaccharides are known to either remain attached to the cell as capsular polysaccharides (CPSs) or to be shed into the extracellular space as exopolysaccharides (EPSs). While many studies have examined the properties of EPS, far less is known about CPS. In this work, we detail the development of new physical and enzymatic methods for the isolation of CPS which can be used to explore the architecture of the capsule and isolated capsular material. We show that sonication or Glucanex enzyme cocktail digestion yields soluble CPS preparations, while use of a French pressure cell press or Glucanex digestion followed by cell disruption removed the capsule and produced cell wall-associated polysaccharide aggregates that we call "capsule ghosts", implying an inherent organization that allows the CPS to exist independent of the cell wall surface. Since sonication and Glucanex digestion were noncytotoxic, it was also possible to observe the cryptococcal cells rebuilding their capsule, revealing the presence of reducing end glycans throughout the capsule. Finally, analysis of dimethyl sulfoxide-extracted and sonicated CPS preparations revealed the conservation of previously identified glucuronoxylomannan motifs only in the sonicated CPS. Together, these observations provide new insights into capsule architecture and synthesis, consistent with a model in which the capsule is assembled from the cell wall outward using smaller polymers, which are then compiled into larger ones.
Asunto(s)
Cryptococcus neoformans , Cápsulas Fúngicas , Polisacáridos , Pared Celular/química , Pared Celular/metabolismo , Criptococosis/microbiología , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/química , Cápsulas Fúngicas/metabolismo , Polisacáridos/metabolismo , Factores de Virulencia/metabolismoRESUMEN
Chemical biology is an emerging field that enables the study and manipulation of biological systems with probes whose reactivities provide structural insights. The opportunistic fungal pathogen Cryptococcus neoformans possesses a polysaccharide capsule that is a major virulence factor, but is challenging to study. We report here the synthesis of a hydroxylamine-armed fluorescent probe that reacts with reducing glycans and its application to study the architecture of the C. neoformans capsule under a variety of conditions. The probe signal localized intracellularly and at the cell wall-membrane interface, implying the presence of reducing-end glycans at this location where the capsule is attached to the cell body. In contrast, no fluorescence signal was detected in the capsule body. We observed vesicle-like structures containing the reducing-end probe, both intra- and extracellularly, consistent with the importance of vesicles in capsular assembly. Disrupting the capsule with DMSO, ultrasound, or mechanical shear stress resulted in capsule alterations that affected the binding of the probe, as reducing ends were exposed and cell membrane integrity was compromised. Unlike the polysaccharides in the assembled capsule, isolated exopolysaccharides contained reducing ends. The reactivity of the hydroxylamine-armed fluorescent probe suggests a model for capsule assembly whereby reducing ends localize to the cell wall surface, supporting previous findings suggesting that this is an initiation point for capsular assembly. We propose that chemical biology is a promising approach for studying the C. neoformans capsule and its associated polysaccharides to unravel their roles in fungal virulence.
Asunto(s)
Cápsulas/química , Cryptococcus neoformans/química , Colorantes Fluorescentes/química , Hidroxilaminas/química , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Criptococosis/genética , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/ultraestructura , Colorantes Fluorescentes/síntesis química , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestructura , Humanos , Hidroxilaminas/síntesis química , Polisacáridos/química , Virulencia/genética , Factores de Virulencia/químicaRESUMEN
Cryptococcus neoformans and Cryptococcus gattii are two species complexes in the large fungal genus Cryptococcus and are responsible for potentially lethal disseminated infections. These two complexes share several phenotypic traits, such as production of the protective compound melanin. In C. neoformans, the pigment associates with key cellular constituents that are essential for melanin deposition within the cell wall. Consequently, melanization is modulated by changes in cell-wall composition or ultrastructure. However, whether similar factors influence melanization in C. gattii is unknown. Herein, we used transmission EM, biochemical assays, and solid-state NMR spectroscopy of representative isolates and "leaky melanin" mutant strains from each species complex to examine the compositional and structural factors governing cell-wall pigment deposition in C. neoformans and C. gattii. The principal findings were the following. 1) C. gattii R265 had an exceptionally high chitosan content compared with C. neoformans H99; a rich chitosan composition promoted homogeneous melanin distribution throughout the cell wall but did not increase the propensity of pigment deposition. 2) Strains from both species manifesting the leaky melanin phenotype had reduced chitosan content, which was compensated for by the production of lipids and other nonpolysaccharide constituents that depended on the species or mutation. 3) Changes in the relative rigidity of cell-wall chitin were associated with aberrant pigment retention, implicating cell-wall flexibility as an independent variable in cryptococcal melanin assembly. Overall, our results indicate that cell-wall composition and molecular architecture are critical factors for the anchoring and arrangement of melanin pigments in both C. neoformans and C. gattii species complexes.
Asunto(s)
Pared Celular/genética , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/genética , Pigmentación/genética , Pared Celular/química , Quitina/química , Quitina/metabolismo , Quitosano/química , Quitosano/metabolismo , Criptococosis/genética , Criptococosis/microbiología , Cryptococcus gattii/genética , Cryptococcus gattii/patogenicidad , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Humanos , Espectroscopía de Resonancia Magnética , Melaninas/química , Melaninas/metabolismo , Mutación/genéticaRESUMEN
Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures â¼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres â¼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.
Asunto(s)
Pared Celular/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/química , Cryptococcus neoformans/clasificación , Levodopa/química , Espectroscopía de Resonancia Magnética , Melaninas/análisis , Melaninas/metabolismo , Microscopía Electrónica de Transmisión , Nanopartículas/química , Tamaño de la Partícula , Filogenia , ProteómicaRESUMEN
The pathogenic fungus Cryptococcus neoformans exhibits morphological changes in cell size during lung infection, producing both typical size 5 to 7 µm cells and large titan cells (> 10 µm and up to 100 µm). We found and optimized in vitro conditions that produce titan cells in order to identify the ancestry of titan cells, the environmental determinants, and the key gene regulators of titan cell formation. Titan cells generated in vitro harbor the main characteristics of titan cells produced in vivo including their large cell size (>10 µm), polyploidy with a single nucleus, large vacuole, dense capsule, and thick cell wall. Here we show titan cells derived from the enlargement of progenitor cells in the population independent of yeast growth rate. Change in the incubation medium, hypoxia, nutrient starvation and low pH were the main factors that trigger titan cell formation, while quorum sensing factors like the initial inoculum concentration, pantothenic acid, and the quorum sensing peptide Qsp1p also impacted titan cell formation. Inhibition of ergosterol, protein and nucleic acid biosynthesis altered titan cell formation, as did serum, phospholipids and anti-capsular antibodies in our settings. We explored genetic factors important for titan cell formation using three approaches. Using H99-derivative strains with natural genetic differences, we showed that titan cell formation was dependent on LMP1 and SGF29 genes. By screening a gene deletion collection, we also confirmed that GPR4/5-RIM101, and CAC1 genes were required to generate titan cells and that the PKR1, TSP2, USV101 genes negatively regulated titan cell formation. Furthermore, analysis of spontaneous Pkr1 loss-of-function clinical isolates confirmed the important role of the Pkr1 protein as a negative regulator of titan cell formation. Through development of a standardized and robust in vitro assay, our results provide new insights into titan cell biogenesis with the identification of multiple important factors/pathways.
Asunto(s)
Cryptococcus neoformans/citología , Cryptococcus neoformans/patogenicidad , Animales , Criptococosis/microbiología , Cryptococcus neoformans/genética , Modelos Animales de Enfermedad , Genes Fúngicos , Interacciones Huésped-Patógeno/genética , Humanos , Hifa/citología , Hifa/genética , Hifa/patogenicidad , Enfermedades Pulmonares Fúngicas/microbiología , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación , Fenotipo , Percepción de QuorumRESUMEN
Cryptococcus neoformans is an encapsulated yeast that causes disease mainly in immunosuppressed hosts. It is considered a facultative intracellular pathogen because of its capacity to survive and replicate inside phagocytes, especially macrophages. This ability is heavily dependent on various virulence factors, particularly the glucuronoxylomannan (GXM) component of the polysaccharide capsule. Inflammasome activation in phagocytes is usually protective against fungal infections, including cryptococcosis. Nevertheless, recognition of C. neoformans by inflammasome receptors requires specific changes in morphology or the opsonization of the yeast, impairing proper inflammasome function. In this context, we analyzed the impact of molecules secreted by C. neoformans B3501 strain and its acapsular mutant Δcap67 in inflammasome activation in an in vitro model. Our results showed that conditioned media derived from B3501 was capable of inhibiting inflammasome-dependent events (i.e., IL-1ß secretion and LDH release via pyroptosis) more strongly than conditioned media from Δcap67, regardless of GXM presence. We also demonstrated that macrophages treated with conditioned media were less responsive against infection with the virulent strain H99, exhibiting lower rates of phagocytosis, increased fungal burdens, and enhanced vomocytosis. Moreover, we showed that the aromatic metabolite DL-Indole-3-lactic acid (ILA) and DL-p-Hydroxyphenyllactic acid (HPLA) were present in B3501's conditioned media and that ILA alone or with HPLA is involved in the regulation of inflammasome activation by C. neoformans. These results were confirmed by in vivo experiments, where exposure to conditioned media led to higher fungal burdens in Acanthamoeba castellanii culture as well as in higher fungal loads in the lungs of infected mice. Overall, the results presented show that conditioned media from a wild-type strain can inhibit a vital recognition pathway and subsequent fungicidal functions of macrophages, contributing to fungal survival in vitro and in vivo and suggesting that secretion of aromatic metabolites, such as ILA, during cryptococcal infections fundamentally impacts pathogenesis.
Asunto(s)
Cryptococcus neoformans/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/metabolismo , Polisacáridos/química , Animales , Caspasa 1/metabolismo , Criptococosis , Medios de Cultivo Condicionados , Células Dendríticas/metabolismo , Técnica del Anticuerpo Fluorescente , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Polisacáridos/metabolismo , Factores de Virulencia/metabolismoRESUMEN
Studies in the 1980s first showed that some natural antibodies were "catalytic" and able to hydrolyze peptide or phosphodiester bonds in antigens. Many naturally occurring catalytic antibodies have since been isolated from human sera and associated with positive and negative outcomes in autoimmune disease and infection. The function and prevalence of these antibodies, however, remain unclear. A previous study suggested that the 18B7 monoclonal antibody against glucuronoxylomannan (GXM), the major component of the Cryptococcus neoformans polysaccharide capsule, hydrolyzed a peptide antigen mimetic. Using mass spectrometry and Förster resonance energy transfer techniques, we confirm and characterize the hydrolytic activity of 18B7 against peptide mimetics and show that 18B7 is able to hydrolyze an oligosaccharide substrate, providing the first example of a naturally occurring catalytic antibody for polysaccharides. Additionally, we show that the catalytic 18B7 antibody increases release of capsular polysaccharide from fungal cells. A serine protease inhibitor blocked peptide and oligosaccharide hydrolysis by 18B7, and a putative serine protease-like active site was identified in the light chain variable region of the antibody. An algorithm was developed to detect similar sites present in unique antibody structures in the Protein Data Bank. The putative site was found in 14 of 63 (22.2%) catalytic antibody structures and 119 of 1602 (7.4%) antibodies with no annotation of catalytic activity. The ability of many antibodies to cleave antigen, albeit slowly, supports the notion that this activity is an important immunoglobulin function in host defense. The discovery of GXM hydrolytic activity suggests new therapeutic possibilities for polysaccharide-binding antibodies.
Asunto(s)
Anticuerpos Antibacterianos/química , Anticuerpos Catalíticos/química , Anticuerpos Monoclonales/química , Cryptococcus neoformans/química , Péptidos/química , Polisacáridos Bacterianos/química , Algoritmos , Dominio Catalítico , Humanos , HidrólisisRESUMEN
Melanization is an intrinsic characteristic of many fungal species, but details of this process are poorly understood because melanins are notoriously difficult pigments to study. While studying the binding of cell-wall dyes, Eosin Y or Uvitex, to melanized and non-melanized Cryptococcus neoformans cells we noted that melanization leads to reduced fluorescence intensity, suggesting that melanin interfered with dye binding to the cell wall. The growth of C. neoformans in melanizing conditions with either of the cell-wall dyes resulted in an increase in supernatant-associated melanin, consistent with blockage of melanin attachment to the cell wall. This effect provided the opportunity to characterize melanin released into culture supernatants. Released melanin particles appeared mostly as networked structures having dimensions consistent with previously described extracellular vesicles. Hence, dye binding to the cell wall created conditions that resembled the 'leaky melanin' phenotype described for certain cell-wall mutants. In agreement with earlier studies on fungal melanins biosynthesis, our observations are supportive of a model whereby C. neoformans melanization proceeds by the attachment of melanin nanoparticles to the cell wall through chitin, chitosan, and various glucans.
Asunto(s)
Pared Celular/metabolismo , Criptococosis/patología , Cryptococcus neoformans/metabolismo , Colorantes Fluorescentes/química , Melaninas/metabolismo , Quitina/metabolismo , Quitosano/metabolismo , Glucanos/metabolismo , Coloración y EtiquetadoRESUMEN
Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies.
Asunto(s)
Acetilglucosamina/metabolismo , Pared Celular/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/metabolismo , Pared Celular/química , Pared Celular/ultraestructura , Quitina/metabolismo , Quitosano/metabolismo , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/ultraestructura , Farmacorresistencia Fúngica/fisiología , Pruebas de Enzimas , Lacasa/metabolismo , Melaninas/biosíntesis , Pruebas de Sensibilidad Microbiana , FenotipoRESUMEN
Polysaccharide capsules are important virulence factors for many microbial pathogens including the opportunistic fungus Cryptococcus neoformans. In the present study, we demonstrate an unusual role for a secreted lactonohydrolase of C. neoformans, LHC1 in capsular higher order structure. Analysis of extracted capsular polysaccharide from wild-type and lhc1Δ strains by dynamic and static light scattering suggested a role for the LHC1 locus in altering the capsular polysaccharide, both reducing dimensions and altering its branching, density and solvation. These changes in the capsular structure resulted in LHC1-dependent alterations of antibody binding patterns, reductions in human and mouse complement binding and phagocytosis by the macrophage-like cell line J774, as well as increased virulence in mice. These findings identify a unique molecular mechanism for tertiary structural changes in a microbial capsule, facilitating immune evasion and virulence of a fungal pathogen.
Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/inmunología , Cápsulas Fúngicas/metabolismo , Hidrolasas/fisiología , Animales , Células Cultivadas , Criptococosis/inmunología , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/ultraestructura , Cápsulas Fúngicas/ultraestructura , Humanos , Hidrolasas/química , Hidrolasas/metabolismo , Ratones , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Proteómica , Virulencia/genéticaRESUMEN
Abs to microbial capsules are critical for host defense against encapsulated pathogens, but very little is known about the effects of Ab binding on the capsule, apart from producing qualitative capsular reactions ("quellung" effects). A problem in studying Ab-capsule interactions is the lack of experimental methodology, given that capsules are fragile, highly hydrated structures. In this study, we pioneered the use of optical tweezers microscopy to study Ab-capsule interactions. Binding of protective mAbs to the capsule of the fungal pathogen Cryptococcus neoformans impaired yeast budding by trapping newly emerging buds inside the parental capsule. This effect is due to profound mAb-mediated changes in capsular mechanical properties, demonstrated by a concentration-dependent increase in capsule stiffness. This increase involved mAb-mediated cross-linking of capsular polysaccharide molecules. These results provide new insights into Ab-mediated immunity, while suggesting a new nonclassical mechanism of Ab function, which may apply to other encapsulated pathogens. Our findings add to the growing body of evidence that Abs have direct antimicrobial functions independent of other components of the immune system.
Asunto(s)
Anticuerpos Antifúngicos/metabolismo , Sitios de Unión de Anticuerpos , Criptococosis/inmunología , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/inmunología , Cápsulas Fúngicas/metabolismo , Polisacáridos/inmunología , Estrés Mecánico , Anticuerpos Antifúngicos/efectos adversos , Anticuerpos Antifúngicos/fisiología , Antígenos Fúngicos/inmunología , División Celular/inmunología , Criptococosis/metabolismo , Criptococosis/microbiología , Cryptococcus neoformans/citología , Cápsulas Fúngicas/inmunología , Cápsulas Fúngicas/fisiología , Hidrodinámica , Pinzas Ópticas , Polisacáridos/metabolismoRESUMEN
Cryptococcus neoformans is an important human, fungal pathogen that sheds polysaccharide (exo-PS) into host tissues. While shed exo-PS mediates numerous untoward effects (including promoting increased intracranial pressure), little is known about the regulation of this phenomenon. Since downregulation of the Allergen 1 (ALL1) gene is associated with high ICP, we investigated the relationship between ALL1 expression and exo-PS structure using a variety of biophysical techniques. The Δall1 mutants of two serotypes produced a shorter exo-PS with less branching and structural complexity than the parental strains. Consistent with lower branching, these exo-PSs manifested higher intrinsic viscosity than the parental strains. The Δall1 mutant strains manifested differences in epitope expression and significant resistance to phagocytosis. Exo-PS of Δall1 mutant exhibited anti-phagocytic properties. Comparative transcriptome analysis of mutant and parental strain under iron-deprived conditions indicated a role of ALL1 in iron homeostasis, characterized by differential regulation of genes that mediate iron reduction and transport. Together, our results demonstrate a role of ALL1 in regulating conformational aspects of PS structure and iron homeostasis. These findings provide a mechanism to explain how changes in ALL1 expression influence virulence of switch variants and suggest that structural changes and polymer length are epigenetically regulated.
Asunto(s)
Antígenos Fúngicos/metabolismo , Cryptococcus neoformans/metabolismo , Polisacáridos/metabolismo , Antígenos Fúngicos/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/inmunología , Epítopos/metabolismo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Hierro/metabolismo , Conformación Molecular , Fagocitosis , Polisacáridos/químicaRESUMEN
Microbial capsules are important virulence traits that mediate cell-host interactions and provide protection against host immune defense mechanisms. Cryptococcus neoformans is a yeast-like fungus that is capable of synthesizing a complex polysaccharide (PS) capsule that is required for causing disease. Microscopic visualization of capsule enlargement is difficult, because the capsule is a highly hydrated structure with an index of refraction that is very close to that of aqueous medium. In this study, we took advantage of the capsular reaction ("quellung" effect) produced by IgM monoclonal antibody (MAb) 13F1 to increase the refraction index difference between capsule and medium such that we visualized the capsule using differential interference contrast (DIC) microscopy. Time-lapse size measurements allowed us to quantify the growth rate of the capsule relative to that of the cell body. The increase in capsule volume per unit of time was consistent with a logistic variable slope model in which the capsule's final size was proportional to the rate of its growth. The rate of capsule growth (0.3 to 2.5 µm(3)/min) was at least 4-fold faster than the rate of cell body growth (0.1 to 0.3 µm(3)/min), and there was large cell-to-cell variation in the temporal kinetics of capsule and cellular growth. Previous to the first cellular replication event, both the capsule and cell body enlarged simultaneously, and their differences showed monotonic growth, which was affected only by its rate of volume increase per unit of time. Using these results, we provide an updated model for cryptococcal capsule biogenesis.
Asunto(s)
Pared Celular/metabolismo , Cryptococcus neoformans/citología , Pared Celular/ultraestructura , Cryptococcus neoformans/metabolismo , Factores de TiempoRESUMEN
Extracellular vesicle production is a ubiquitous process in Gram-negative bacteria, but little is known about such process in Gram-positive bacteria. We report the isolation of extracellular vesicles from the supernatants of Bacillus anthracis, a Gram-positive bacillus that is a powerful agent for biological warfare. B. anthracis vesicles formed at the outer layer of the bacterial cell had double-membrane spheres and ranged from 50 to 150 nm in diameter. Immunoelectron microscopy with mAbs to protective antigen, lethal factor, edema toxin, and anthrolysin revealed toxin components and anthrolysin in vesicles, with some vesicles containing more than one toxin component. Toxin-containing vesicles were also visualized inside B. anthracis-infected macrophages. ELISA and immunoblot analysis of vesicle preparations confirmed the presence of B. anthracis toxin components. A mAb to protective antigen protected macrophages against vesicles from an anthrolysin-deficient strain, but not against vesicles from Sterne 34F2 and Sterne δT strains, consistent with the notion that vesicles delivered both toxin and anthrolysin to host cells. Vesicles were immunogenic in BALB/c mice, which produced a robust IgM response to toxin components. Furthermore, vesicle-immunized mice lived significantly longer than controls after B. anthracis challenge. Our results indicate that toxin secretion in B. anthracis is, at least, partially vesicle-associated, thus allowing concentrated delivery of toxin components to target host cells, a mechanism that may increase toxin potency. Our observations may have important implications for the design of vaccines, for passive antibody strategies, and provide a previously unexplored system for studying secretory pathways in Gram-positive bacteria.
Asunto(s)
Carbunco/metabolismo , Antígenos Bacterianos/metabolismo , Bacillus anthracis/metabolismo , Bacillus anthracis/ultraestructura , Toxinas Bacterianas/metabolismo , Estructuras de la Membrana Celular/metabolismo , Estructuras de la Membrana Celular/ultraestructura , Animales , Carbunco/epidemiología , Carbunco/inmunología , Carbunco/patología , Carbunco/prevención & control , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/farmacología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Antígenos Bacterianos/inmunología , Bacillus anthracis/genética , Bacillus anthracis/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/inmunología , Estructuras de la Membrana Celular/genética , Estructuras de la Membrana Celular/inmunología , Inmunoglobulina M/inmunología , Inmunoglobulina M/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Tamaño de la PartículaRESUMEN
Melanin is a complex pigment that is found in various fungal species and is associated with a multitude of protective functions against environmental stresses. In Cryptococcus neoformans, melanin is synthesized from exogenous substrate and deposited in the cell wall. Although melanin is often cited as a protector against mechanical stress, there is a paucity of direct experimental data supporting this claim. To probe whether melanin enhances cellular strength, we used ultrasonic cavitation and French cell press pressure to stress cryptococcal cells and then measured changes in cellular morphology and fragmentation for melanized and nonmelanized C. neoformans cells. Melanized yeast cells exhibited lower rates of fragmentation and greater cell areas than did nonmelanized yeast cells after sonication or French press passage. When subjected to French press passage, both melanized and nonmelanized cells exhibited responses that were dependent on their culture age. Our results indicate that melanization protects against some of the morphological changes, such as fragmentation and cellular shrinkage, that are initiated by mechanical energy derived from either sonic cavitation or French press passage, thus supporting the notion that this pigment provides mechanical strength for fungal cell walls. IMPORTANCE Melanin was shown in prior microbiological experiments to be associated with protection against environmental stressors, and it has often been cited as being associated with mechanical stress protection. However, there is a lack of direct experimentation to confirm this claim. We examined the responses of melanized and nonmelanized C. neoformans cells to sonication and French press passage, and we report differences in outcomes depending not only on melanization status but also on culture age. Such findings have important implications for the design and interpretation of laboratory experiments involving C. neoformans. In addition, the elucidation of some of the mechanical properties of melanin promotes further research into fungal melanin applications in health care and industry.
Asunto(s)
Criptococosis , Cryptococcus neoformans , Melaninas , Saccharomyces cerevisiae , Estrés Mecánico , Criptococosis/microbiologíaRESUMEN
Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel-sometimes paradigm-changing-findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host-pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and-although we ourselves are involved in laboratory experiments and practical fieldwork-also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.
Asunto(s)
Inteligencia Artificial , COVID-19 , Humanos , Pandemias , Control de Enfermedades Transmisibles , FilosofíaRESUMEN
Understanding the mechanisms of antibody-mediated neutralization of SARS-CoV-2 is critical in combating the COVID-19 pandemic. Based on previous reports of antibody catalysis, we investigated the proteolysis of spike (S) by antibodies in COVID-19 convalescent plasma (CCP) and its contribution to viral neutralization. Quenched fluorescent peptides were designed based on S epitopes to sensitively detect antibody-mediated proteolysis. We observed epitope cleavage by CCP from different donors which persisted when plasma was heat-treated or when IgG was isolated from plasma. Further, purified CCP antibodies proteolyzed recombinant S domains, as well as authentic viral S. Cleavage of S variants suggests CCP antibody-mediated proteolysis is a durable phenomenon despite antigenic drift. We differentiated viral neutralization occurring via direct interference with receptor binding from that occurring by antibody-mediated proteolysis, demonstrating that antibody catalysis enhanced neutralization. These results suggest that antibody-catalyzed damage of S is an immunologically relevant function of neutralizing antibodies against SARS-CoV-2.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteolisis , Pandemias , COVID-19/terapia , Sueroterapia para COVID-19 , Glicoproteína de la Espiga del Coronavirus , Péptido Hidrolasas , Anticuerpos Neutralizantes , Epítopos , Anticuerpos AntiviralesRESUMEN
For optimal proteolytic function, the central core of the proteasome (core particle (CP) or 20S) has to associate with activators. We investigated the impact of the yeast activator Blm10 on proteasomal peptide and protein degradation. We found enhanced degradation of peptide substrates in the presence of Blm10 and demonstrated that Blm10 has the capacity to accelerate proteasomal turnover of the unstructured protein tau-441 in vitro. Mechanistically, proteasome activation requires the opening of a closed gate, which allows passage of unfolded proteins into the catalytic chamber. Our data indicate that gate opening by Blm10 is achieved via engagement of its C-terminal segment with the CP. Crucial for this activity is a conserved C-terminal YYX motif, with the penultimate tyrosine playing a preeminent role. Thus, Blm10 utilizes a gate opening strategy analogous to the proteasomal ATPases HbYX-dependent mechanism. Because gating incompetent Blm10 C-terminal point mutants confers a loss of function phenotype, we propose that the cellular function of Blm10 is based on CP association and activation to promote the degradation of proteasome substrates.