Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Chem Soc ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848551

RESUMEN

We present millisecond quantitative serial X-ray crystallography at 1.7 Å resolution demonstrating precise optical control of reversible population transfer from Trans-Cis and Cis-Trans photoisomerization of a reversibly switchable fluorescent protein, rsKiiro. Quantitative results from the analysis of electron density differences, extrapolated structure factors, and occupancy refinements are shown to correspond to optical measurements of photoinduced population transfer and have sensitivity to a few percent in concentration differences. Millisecond time-resolved concentration differences are precisely and reversibly controlled through intense continuous wave laser illuminations at 405 and 473 nm for the Trans-to-Cis and Cis-to-Trans reactions, respectively, while the X-ray crystallographic measurement and laser illumination of the metastable Trans chromophore conformation causes partial thermally driven reconversion across a 91.5 kJ/mol thermal barrier from which a temperature jump between 112 and 128 K is extracted.

2.
J Am Chem Soc ; 145(29): 15796-15808, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37418747

RESUMEN

Chromophore cis/trans photoisomerization is a fundamental process in chemistry and in the activation of many photosensitive proteins. A major task is understanding the effect of the protein environment on the efficiency and direction of this reaction compared to what is observed in the gas and solution phases. In this study, we set out to visualize the hula twist (HT) mechanism in a fluorescent protein, which is hypothesized to be the preferred mechanism in a spatially constrained binding pocket. We use a chlorine substituent to break the twofold symmetry of the embedded phenolic group of the chromophore and unambiguously identify the HT primary photoproduct. Through serial femtosecond crystallography, we then track the photoreaction from femtoseconds to the microsecond regime. We observe signals for the photoisomerization of the chromophore as early as 300 fs, obtaining the first experimental structural evidence of the HT mechanism in a protein on its femtosecond-to-picosecond timescale. We are then able to follow how chromophore isomerization and twisting lead to secondary structure rearrangements of the protein ß-barrel across the time window of our measurements.


Asunto(s)
Colorantes , Proteínas , Cristalografía , Estructura Secundaria de Proteína
3.
Nature ; 493(7431): 250-4, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23178808

RESUMEN

DNA double-strand break repair is critical for cell viability and involves highly coordinated pathways to restore DNA integrity at the lesion. An early event during homology-dependent repair is resection of the break to generate progressively longer 3' single-strand tails that are used to identify suitable templates for repair. Sister chromatids provide near-perfect sequence homology and are therefore the preferred templates during homologous recombination. To provide a bias for the use of sisters as donors, cohesin--the complex that tethers sister chromatids together--is recruited to the break to enforce physical proximity. Here we show that DNA breaks promote dissociation of cohesin loaded during the previous S phase in budding yeast, and that damage-induced dissociation of cohesin requires separase, the protease that dissolves cohesion in anaphase. Moreover, a separase-resistant allele of the gene coding for the α-kleisin subunit of cohesin, Mcd1 (also known as Scc1), reduces double-strand break resection and compromises the efficiency of repair even when loaded during DNA damage. We conclude that post-replicative DNA repair involves cohesin dissociation by separase to promote accessibility to repair factors during the coordinated cellular response to restore DNA integrity.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Replicación del ADN , Endopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Alelos , Anafase , Proteínas de Ciclo Celular/genética , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Roturas del ADN de Doble Cadena , Fase G2 , Metafase , Unión Proteica , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Separasa , Cohesinas
4.
Int J Mol Sci ; 18(9)2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28880248

RESUMEN

The photochromic fluorescent protein Skylan-NS (Nonlinear Structured illumination variant mEos3.1H62L) is a reversibly photoswitchable fluorescent protein which has an unilluminated/ground state with an anionic and cis chromophore conformation and high fluorescence quantum yield. Photo-conversion with illumination at 515 nm generates a meta-stable intermediate with neutral trans-chromophore structure that has a 4 h lifetime. We present X-ray crystal structures of the cis (on) state at 1.9 Angstrom resolution and the trans (off) state at a limiting resolution of 1.55 Angstrom from serial femtosecond crystallography experiments conducted at SPring-8 Angstrom Compact Free Electron Laser (SACLA) at 7.0 keV and 10.5 keV, and at Linac Coherent Light Source (LCLS) at 9.5 keV. We present a comparison of the data reduction and structure determination statistics for the two facilities which differ in flux, beam characteristics and detector technologies. Furthermore, a comparison of droplet on demand, grease injection and Gas Dynamic Virtual Nozzle (GDVN) injection shows no significant differences in limiting resolution. The photoconversion of the on- to the off-state includes both internal and surface exposed protein structural changes, occurring in regions that lack crystal contacts in the orthorhombic crystal form.


Asunto(s)
Cristalografía por Rayos X/métodos , Rayos Láser , Proteínas Luminiscentes/química , Conformación Proteica , Temperatura
5.
Nat Cell Biol ; 8(9): 1032-4, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16892052

RESUMEN

DNA double-strand breaks (DSB) can arise during DNA replication, or after exposure to DNA-damaging agents, and their correct repair is fundamental for cell survival and genomic stability. Here, we show that the Smc5-Smc6 complex is recruited to DSBs de novo to support their repair by homologous recombination between sister chromatids. In addition, we demonstrate that Smc5-Smc6 is necessary to suppress gross chromosomal rearrangements. Our findings show that the Smc5-Smc6 complex is essential for genome stability as it promotes repair of DSBs by error-free sister-chromatid recombination (SCR), thereby suppressing inappropriate non-sister recombination events.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Intercambio de Cromátides Hermanas , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Inestabilidad Genómica , Saccharomyces cerevisiae/genética
6.
Annu Rev Plant Biol ; 74: 225-257, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36889003

RESUMEN

Photosystem II is the water-oxidizing and O2-evolving enzyme of photosynthesis. How and when this remarkable enzyme arose are fundamental questions in the history of life that have remained difficult to answer. Here, recent advances in our understanding of the origin and evolution of photosystem II are reviewed and discussed in detail. The evolution of photosystem II indicates that water oxidation originated early in the history of life, long before the diversification of cyanobacteria and other major groups of prokaryotes, challenging and transforming current paradigms on the evolution of photosynthesis. We show that photosystem II has remained virtually unchanged for billions of years, and yet the nonstop duplication process of the D1 subunit of photosystem II, which controls photochemistry and catalysis, has enabled the enzyme to become adaptable to variable environmental conditions and even to innovate enzymatic functions beyond water oxidation. We suggest that this evolvability can be harnessed to develop novel light-powered enzymes with the capacity to carry out complex multistep oxidative transformations for sustainable biocatalysis.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Fotosíntesis/genética , Agua , Cianobacterias/genética , Cianobacterias/metabolismo , Oxidación-Reducción , Oxígeno
7.
Nat Chem ; 15(11): 1607-1615, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37563326

RESUMEN

The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.


Asunto(s)
Rodopsina , Vibración , Movimiento (Física) , Enlace de Hidrógeno
8.
J Phys Chem B ; 126(45): 9288-9296, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36326150

RESUMEN

The chromophores of reversibly switchable fluorescent proteins (rsFPs) undergo photoisomerization of both the trans and cis forms. Concurrent with cis/trans photoisomerisation, rsFPs typically become protonated on the phenolic oxygen resulting in a blue shift of the absorption. A synthetic rsFP referred to as rsEospa, derived from EosFP family, displays the same spectroscopic behavior as the GFP-like rsFP Dronpa at pH 8.4 and involves the photoconversion between nonfluorescent neutral and fluorescent anionic chromophore states. Millisecond time-resolved synchrotron serial crystallography of rsEospa at pH 8.4 shows that photoisomerization is accompanied by rearrangements of the same three residues as seen in Dronpa. However, at pH 5.5 we observe that the OFF state is identified as the cationic chromophore with additional protonation of the imidazolinone nitrogen which is concurrent with a newly formed hydrogen bond with the Glu212 carboxylate side chain. FTIR spectroscopy resolves the characteristic up-shifted carbonyl stretching frequency at 1713 cm-1 for the cationic species. Electronic spectroscopy furthermore distinguishes the cationic absorption band at 397 nm from the neutral species at pH 8.4 seen at 387 nm. The observation of photoisomerization of the cationic chromophore state demonstrates the conical intersection for the electronic configuration, where previously fluorescence was proposed to be the main decay route for states containing imidazolinone nitrogen protonation. We present the full time-resolved room-temperature X-ray crystallographic, FTIR, and UV/vis assignment and photoconversion modeling of rsEospa.


Asunto(s)
Nitrógeno , Sincrotrones , Proteínas Luminiscentes/química , Cationes/química , Espectroscopía Infrarroja por Transformada de Fourier , Cristalografía por Rayos X
9.
Genetics ; 182(2): 437-46, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19332880

RESUMEN

Genomic integrity is threatened by multiple sources of DNA damage. DNA double-strand breaks (DSBs) are among the most dangerous types of DNA lesions and can be generated by endogenous or exogenous agents, but they can arise also during DNA replication. Sister chromatid recombination (SCR) is a key mechanism for the repair of DSBs generated during replication and it is fundamental for maintaining genomic stability. Proper repair relies on several factors, among which histone modifications play important roles in the response to DSBs. Here, we study the role of the histone H3K79 methyltransferase Dot1 in the repair by SCR of replication-dependent HO-induced DSBs, as a way to assess its function in homologous recombination. We show that Dot1, the Rad9 DNA damage checkpoint adaptor, and phosphorylation of histone H2A (gammaH2A) are required for efficient SCR. Moreover, we show that Dot1 and Rad9 promote DSB-induced loading of cohesin onto chromatin. We propose that recruitment of Rad9 to DSB sites mediated by gammaH2A and H3K79 methylation contributes to DSB repair via SCR by regulating cohesin binding to damage sites. Therefore, our results contribute to an understanding of how different chromatin modifications impinge on DNA repair mechanisms, which are fundamental for maintaining genomic stability.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cohesinas
10.
J Phys Chem B ; 124(36): 7765-7778, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32805110

RESUMEN

Reaction intermediates in the green-to-red photoconversion of the photochromic fluorescent protein EosFP have been observed using high-intensity continuous blue illumination. An intermediate was identified through light-induced accumulation that continues to convert the green form in subsequent darkness, putatively containing a tyrosyl radical, albeit with anomalously shifted features in both the electronic and FTIR spectra. Lowering the pH to 5.5 significantly delays the decay of this tyrosyl intermediate, which is accompanied by Stark-shifted features in the electronic spectra of reactants and products. Vibrational mode assignments for the high-frequency and fingerprint FTIR spectral regions of the reaction intermediates support a proposed sequence of events where the newly formed Cα═Cß ethylenic bond precedes modifications on the His-62 imidazole ring and confirms a C═O(NH2) product group on Phe-61. We propose a reaction mechanism that involves tyrosyl generation via singlet excited-state-mediated oxidation which subsequently triggers the covalent reactions by oxidation of the green chromophore.

11.
Nucleic Acids Res ; 34(20): 5852-62, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17062626

RESUMEN

The Saccharomyces cerevisiae protein kinase Rad53 plays a key role in maintaining genomic integrity after DNA damage and is an essential component of the 'intra-S-phase checkpoint'. In budding yeast, alkylating chemicals, such as methyl methanesulfonate (MMS), or depletion of nucleotides by hydroxyurea (HU) stall DNA replication forks and thus activate Rad53 during S-phase. This stabilizes stalled DNA replication forks and prevents the activation of later origins of DNA replication. Here, we report that a reduction in the level of Rad53 kinase causes cells to behave very differently in response to DNA alkylation or to nucleotide depletion. While cells lacking Rad53 are unable to activate the checkpoint response to HU or MMS, so that they rapidly lose viability, a reduction in Rad53 enhances cell survival only after DNA alkylation. This reduction in the level of Rad53 allows S-phase cells to maintain the stability of DNA replication forks upon MMS treatment, but does not prevent the collapse of forks in HU. Our results may have important implications for cancer therapies, as they suggest that partial impairment of the S-phase checkpoint Rad53/Chk2 kinase provides cells with a growth advantage in the presence of drugs that damage DNA.


Asunto(s)
Antineoplásicos Alquilantes/toxicidad , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Alelos , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Replicación del ADN , Resistencia a Medicamentos , Eliminación de Gen , Hidroxiurea/toxicidad , Metilmetanosulfonato/toxicidad , Mutación , Proteínas Serina-Treonina Quinasas/genética , Fase S/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
12.
Curr Biol ; 22(17): 1564-75, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22771042

RESUMEN

BACKGROUND: Cohesion between sister chromatids is fundamental to ensure faithful chromosome segregation during mitosis and accurate repair of DNA damage postreplication. At the molecular level, cohesion establishment involves two defined events, a chromatin binding step and a chromatid entrapment event driven by posttranslational modifications on cohesin subunits. RESULTS: Here, we show that modification by the small ubiquitin-like protein (SUMO) is required for sister chromatid tethering after DNA damage. We find that all subunits of cohesin become SUMOylated upon exposure to DNA damaging agents or presence of a DNA double-strand break. We have mapped all lysine residues on cohesin's α-kleisin subunit Mcd1 (Scc1) where SUMO can conjugate. We demonstrate that Mcd1 SUMOylation-deficient alleles are still recruited to DSB-proximal regions but are defective in tethering sister chromatids and consequently fail to establish damage-induced cohesion both at DSBs and undamaged chromosomes. Moreover, we demonstrate that the bulk of Mcd1 SUMOylation in response to damage is carried out by the SUMO E3 ligase Nse2, a subunit of the related Smc5-Smc6 complex. SUMOylation occurs in cells with compromised Chk1 kinase activity, necessary for known posttranslational modifications on Mcd1, required for damage-induced cohesion. CONCLUSIONS: These findings demonstrate that SUMOylation of Mcd1 is a novel prerequisite for the establishment of DNA damage-induced cohesion at DSB-proximal regions and cohesion-associating regions (CARs) genome-wide.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Daño del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sumoilación , Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Roturas del ADN de Doble Cadena , Proteínas de Saccharomyces cerevisiae/fisiología , Cohesinas
13.
Science ; 315(5817): 1411-5, 2007 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-17347440

RESUMEN

Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most significantly at natural replication-impeding loci like the ribosomal DNA gene cluster. In the absence of Smc5-Smc6, chromosome nondisjunction occurs as a consequence of mitotic entry with unfinished replication despite intact checkpoint responses. Eliminating processes that obstruct replication fork progression restores the temporal uncoupling between replication and segregation in smc5-smc6 mutants. We propose that the completion of replication is not under the surveillance of known checkpoints.


Asunto(s)
Anafase , Cromosomas Fúngicos/genética , Replicación del ADN , ADN Ribosómico/genética , Mitosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Segregación Cromosómica , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Ribosómico/metabolismo , Genes Fúngicos , Genes de ARNr , Metafase , Modelos Genéticos , Mutación , No Disyunción Genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Mol Cell ; 19(5): 699-706, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-16137625

RESUMEN

The yeast checkpoint factors Mrc1p and Tof1p travel with the replication fork and mediate the activation of the Rad53p kinase in response to a replication stress. We show here that both proteins are required for normal fork progression but play different roles at stalled forks. Tof1p is critical for the activity of the rDNA replication fork barrier (RFB) but plays a minor role in the replication checkpoint. In contrast, Mrc1p is not necessary for RFB activity but is essential to mediate the replication stress response. Interestingly, stalled forks did not collapse in mrc1Delta cells exposed to hydroxyurea (HU) as they do in rad53 mutants. However, forks failed to restart when mrc1Delta cells were released from the block. The critical role of Mrc1p in HU is therefore to promote fork recovery in a Rad53p-independent manner, presumably through the formation of a stable fork-pausing complex.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Quinasa de Punto de Control 2 , Replicación del ADN/efectos de los fármacos , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN , Hidroxiurea/farmacología , Metilmetanosulfonato/farmacología , Mutágenos/farmacología , Mutación , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fase S/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA