Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 31(19): 3871-84, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22903062

RESUMEN

The E2F family of transcription factors plays an important role in controlling cell-cycle progression. While this is their best-known function, we report here novel functions for the newest members of the E2F family, E2F7 and E2F8 (E2F7/8). We show that simultaneous deletion of E2F7/8 in zebrafish and mice leads to severe vascular defects during embryonic development. Using a panel of transgenic zebrafish with fluorescent-labelled blood vessels, we demonstrate that E2F7/8 are essential for proper formation of blood vessels. Despite their classification as transcriptional repressors, we provide evidence for a molecular mechanism through which E2F7/8 activate the transcription of the vascular endothelial growth factor A (VEGFA), a key factor in guiding angiogenesis. We show that E2F7/8 directly bind and stimulate the VEGFA promoter independent of canonical E2F binding elements. Instead, E2F7/8 form a transcriptional complex with the hypoxia inducible factor 1 (HIF1) to stimulate VEGFA promoter activity. These results uncover an unexpected link between E2F7/8 and the HIF1-VEGFA pathway providing a molecular mechanism by which E2F7/8 control angiogenesis.


Asunto(s)
Factores de Transcripción E2F/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Fisiológica/genética , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Factores de Transcripción E2F/genética , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Eliminación de Gen , Humanos , Ratones , Regiones Promotoras Genéticas , Pez Cebra
2.
Cancer Genet Cytogenet ; 139(2): 91-6, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12550767

RESUMEN

Amplification of region 17p11.2 approximately p12 has been found in 13%-29% of high-grade osteosarcomas, suggesting the presence of an oncogene or oncogenes that may contribute to their development. To determine the location of these putative oncogenes, we established 17p11.2 approximately p12 amplification profiles by semiquantitative PCR, using 15 microsatellite markers and seven candidate genes in 19 high-grade osteosarcomas. Most of the tumors displayed complex amplification profiles, with frequent involvement of marker D17S2041 in 17p12 and TOP3A in 17p11.2 and, in some cases, very high-level amplification of PMP22 and MAPK7 in 17p11.2. Our findings suggest that multiple amplification targets, including PMP22, TOP3A, and MAPK7 or genes close to these candidate oncogenes, may be present in 17p11.2 approximately p12 and thus contribute to osteosarcoma tumorigenesis.


Asunto(s)
Neoplasias Óseas/genética , Cromosomas Humanos Par 17/ultraestructura , ADN-Topoisomerasas de Tipo I/genética , Amplificación de Genes , Proteínas de la Membrana/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Oncogenes , Osteosarcoma/genética , Neoplasias Óseas/patología , Mapeo Cromosómico , Cromosomas Humanos Par 17/genética , ADN de Neoplasias/genética , Marcadores Genéticos , Humanos , Repeticiones de Microsatélite , Proteína Quinasa 7 Activada por Mitógenos , Osteosarcoma/patología , Reacción en Cadena de la Polimerasa
3.
Nat Cell Biol ; 14(11): 1181-91, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23064264

RESUMEN

Polyploidization is observed in all mammalian species and is a characteristic feature of hepatocytes, but its molecular mechanism and biological significance are unknown. Hepatocyte polyploidization in rodents occurs through incomplete cytokinesis, starts after weaning and increases with age. Here, we show in mice that atypical E2F8 is induced after weaning and required for hepatocyte binucleation and polyploidization. A deficiency in E2f8 led to an increase in the expression level of E2F target genes promoting cytokinesis and thereby preventing polyploidization. In contrast, loss of E2f1 enhanced polyploidization and suppressed the polyploidization defect of hepatocytes deficient for atypical E2Fs. In addition, E2F8 and E2F1 were found on the same subset of target promoters. Contrary to the long-standing hypothesis that polyploidization indicates terminal differentiation and senescence, we show that prevention of polyploidization through inactivation of atypical E2Fs has, surprisingly, no impact on liver differentiation, zonation, metabolism and regeneration. Together, these results identify E2F8 as a repressor and E2F1 as an activator of a transcriptional network controlling polyploidization in mammalian cells.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Poliploidía , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Noqueados , Proteínas Represoras/genética
4.
Endocrinology ; 151(2): 830-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20032059

RESUMEN

The mechano growth factor (MGF), a splice variant of the IGF-I gene, was first discovered in mechanically overloaded skeletal muscle and was shown to play an important role in proliferation of muscle stem cells. Since then, the presence and effects of MGF have been demonstrated in other tissues. MGF has been shown to act neuroprotectively during brain ischemia, and pretreatment with MGF before myocardial infarction improves cardiac function. Because MGF plays a permissive role in exercise-induced skeletal muscle hypertrophy, we hypothesize that MGF is commonly involved in cardiac hypertrophy. To investigate the regulation of MGF expression in heart, mice were treated with thyroid hormone (T(3)) for 12 d to induce physiological cardiac hypertrophy. MGF mRNA expression was specifically increased in midregions of the septum and left ventricular wall. Interestingly, MGF expression strongly correlated with the increased or decreased beating frequency of hyperthyroid and hypothyroid hearts. To further investigate the mechanically dependent induction of MGF, neonatal rat cardiomyocytes were isolated and exposed to T(3). Upon T(3) treatment, cardiomyocytes increased both contractile activity measured as beats per minute and MGF as well as IGF-IEa mRNA expression. Importantly, when cardiomyocytes were contractile arrested by KCl, simultaneous exposure to T(3) prevented the up-regulation of MGF, whereas IGF-IEa was still induced. These studies demonstrated that MGF but not IGF-IEa expression is dependent on beating activity. These findings suggest that MGF is specifically stimulated by mechanical loading of the heart to mediate the hypertrophic response to thyroid hormone.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/genética , Triyodotironina/farmacología , Empalme Alternativo , Animales , Animales Recién Nacidos , Variación Genética , Hipertiroidismo/inducido químicamente , Hipertiroidismo/fisiopatología , Hipotiroidismo/inducido químicamente , Hipotiroidismo/fisiopatología , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Miocitos Cardíacos/fisiología , Condicionamiento Físico Animal , Reacción en Cadena de la Polimerasa , Propiltiouracilo/farmacología , ARN/genética , ARN Mensajero/genética , Ratas , Ratas Wistar , Glándula Tiroides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA