Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(42): 22903-22912, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844092

RESUMEN

Organosilica nanoparticles that contain responsive organic building blocks as constitutive components of the silica network offer promising opportunities for the development of innovative drug formulations, biomolecule delivery, and diagnostic tools. However, the synthetic challenges required to introduce dynamic and multifunctional building blocks have hindered the realization of biomimicking nanoparticles. In this study, capitalizing on our previous research on responsive nucleic acid-based organosilica nanoparticles, we combine the supramolecular programmability of nucleic acid (NA) interactions with sol-gel chemistry. This approach allows us to create dynamic supramolecular bridging units of nucleic acids in a silica-based scaffold. Two peptide nucleic acid-based monoalkoxysilane derivatives, which self-assemble into a supramolecular bis-alkoxysilane through direct base pairing, were chosen as the noncovalent units inserted into the silica network. In addition, a bridging functional NA aptamer leads to the specific recognition of ATP molecules. In a one-step bottom-up approach, the resulting supramolecular building blocks can be used to prepare responsive organosilica nanoparticles. The supramolecular Watson-Crick-Franklin interactions of the organosilica nanoparticles result in a programmable response to external physical (i.e., temperature) and biological (i.e., DNA and ATP) inputs and thus pave the way for the rational design of multifunctional silica materials with application from drug delivery to theranostics.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Dióxido de Silicio/química , Adenosina Trifosfato
2.
J Am Chem Soc ; 145(42): 22896-22902, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37734737

RESUMEN

The development of smart nanoparticles (NPs) that encode responsive features in the structural framework promises to extend the applications of NP-based drugs, vaccines, and diagnostic tools. New nanocarriers would ideally consist of a minimal number of biocompatible components and exhibit multiresponsive behavior to specific biomolecules, but progress is limited by the difficulty of synthesizing suitable building blocks. Through a nature-inspired approach that combines the programmability of nucleic acid interactions and sol-gel chemistry, we report the incorporation of synthetic nucleic acids and analogs, as constitutive components, into organosilica NPs. We prepared different nanomaterials containing single-stranded nucleic acids that are covalently embedded in the silica network. Through the incorporation of functional nucleic acids into the organosilica framework, the particles respond to various biological, physical, and chemical inputs, resulting in detectable physicochemical changes. The one-step bottom-up approach used to prepare organosilica NPs provides multifunctional systems that combine the tunability of oligonucleotides with the stiffness, low cost, and biocompatibility of silica for different applications ranging from drug delivery to sensing.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silicio/química
3.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35890822

RESUMEN

In this paper, a novel platform for lab-in-fiber-based biosensors is studied. Hollow-core tube lattice fibers (HC-TLFs) are proposed as a label-free biosensor for the detection of DNA molecules. The particular light-guiding mechanism makes them a highly sensitive tool. Their transmission spectrum is featured by alternations of high and low transmittance at wavelength regions whose values depend on the thickness of the microstructured web composing the cladding around the hollow core. In order to achieve DNA detection by using these fibers, an internal chemical functionalization process of the fiber has been performed in five steps in order to link specific peptide nucleic acid (PNA) probes, then the functionalized fiber was used for a three-step assay. When a solution containing a particular DNA sequence is made to flow through the HC of the TLF in an 'optofluidic' format, a bio-layer is formed on the cladding surfaces causing a red-shift of the fiber transmission spectrum. By comparing the fiber transmission spectra before and after the flowing it is possible to identify the eventual formation of the layer and, therefore, the presence or not of a particular DNA sequence in the solution.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos de Péptidos , ADN/química , Sondas de Ácido Nucleico , Fibras Ópticas , Ácidos Nucleicos de Péptidos/química
4.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012615

RESUMEN

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encodes for a chloride channel defective in Cystic Fibrosis (CF). Accordingly, upregulation of its expression might be relevant for the development of therapeutic protocols for CF. MicroRNAs are deeply involved in the CFTR regulation and their targeting with miRNA inhibitors (including those based on Peptide Nucleic Acids, PNAs)is associated with CFTR upregulation. Targeting of miR-145-5p, miR-101-3p, and miR-335-5p with antisense PNAs was found to be associated with CFTR upregulation. The main objective of this study was to verify whether combined treatments with the most active PNAs are associated with increased CFTR gene expression. The data obtained demonstrate that synergism of upregulation of CFTR production can be obtained by combined treatments of Calu-3 cells with antisense PNAs targeting CFTR-regulating microRNAs. In particular, highly effective combinations were found with PNAs targeting miR-145-5p and miR-101-3p. Content of mRNAs was analyzed by RT-qPCR, the CFTR production by Western blotting. Combined treatment with antagomiRNAs might lead to maximized upregulation of CFTR and should be considered in the development of protocols for CFTR activation in pathological conditions in which CFTR gene expression is lacking, such as Cystic Fibrosis.


Asunto(s)
Antagomirs , Fibrosis Quística , MicroARNs , Ácidos Nucleicos de Péptidos , Regiones no Traducidas 3' , Antagomirs/farmacología , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Humanos , MicroARNs/genética , Ácidos Nucleicos de Péptidos/farmacología
5.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209084

RESUMEN

Glioblastoma multiforme (GBM) is a lethal malignant tumor accounting for 42% of the tumors of the central nervous system, the median survival being 15 months. At present, no curative treatment is available for GBM and new drugs and therapeutic protocols are urgently needed. In this context, combined therapy appears to be a very interesting approach. The isothiocyanate sulforaphane (SFN) has been previously shown to induce apoptosis and inhibit the growth and invasion of GBM cells. On the other hand, the microRNA miR-15b is involved in invasiveness and proliferation in GBM and its inhibition is associated with the induction of apoptosis. On the basis of these observations, the objective of the present study was to determine whether a combined treatment using SFN and a peptide nucleic acid interfering with miR-15b-5p (PNA-a15b) might be proposed for increasing the pro-apoptotic effects of the single agents. To verify this hypothesis, we have treated GMB U251 cells with SFN alone, PNA-a15b alone or their combination. The cell viability, apoptosis and combination index were, respectively, analyzed by calcein staining, annexin-V and caspase-3/7 assays, and RT-qPCR for genes involved in apoptosis. The efficacy of the PNA-a15b determined the miR-15b-5p content analyzed by RT-qPCR. The results obtained indicate that SFN and PNA-a15b synergistically act in inducing the apoptosis of U251 cells. Therefore, the PNA-a15b might be proposed in a "combo-therapy" associated with SFN. Overall, this study suggests the feasibility of using combined treatments based on PNAs targeting miRNA involved in GBM and nutraceuticals able to stimulate apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Isotiocianatos/farmacología , MicroARNs/genética , Ácidos Nucleicos de Péptidos/farmacología , Sulfóxidos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Glioblastoma , Humanos
6.
Langmuir ; 36(16): 4272-4279, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32239946

RESUMEN

The available active surface area and the density of probes immobilized on this surface are responsible for achieving high specificity and sensitivity in electrochemical biosensors that detect biologically relevant molecules, including DNA. Here, we report the design of gold-coated, silicon micropillar-structured electrodes functionalized with modified poly-l-lysine (PLL) as an adhesion layer to concomitantly assess the increase in sensitivity with the increase of the electrochemical area and control over the probe density. By systematically reducing the center-to-center distance between the pillars (pitch), denser micropillar arrays were formed at the electrode, resulting in a larger sensing area. Azido-modified peptide nucleic acid (PNA) probes were click-reacted onto the electrode interface, exploiting PLL with appended oligo(ethylene glycol) (OEG) and dibenzocyclooctyne (DBCO) moieties (PLL-OEG-DBCO) for antifouling and probe binding properties, respectively. The selective electrochemical sandwich assay formation, composed of consecutive hybridization steps of the target complementary DNA (cDNA) and reporter DNA modified with the electroactive ferrocene functionality (rDNA-Fc), was monitored by quartz crystal microbalance. The DNA detection performance of micropillared electrodes with different pitches was evaluated by quantifying the cyclic voltammetric response of the surface-confined rDNA-Fc. By decrease of the pitch of the pillar array, the area of the electrode was enhanced by up to a factor 10.6. A comparison of the electrochemical data with the geometrical area of the pillared electrodes confirmed the validity of the increased sensitivity of the DNA detection by the design of the micropillar array.


Asunto(s)
ADN/análisis , Ácidos Nucleicos Inmovilizados/química , Ácidos Nucleicos de Péptidos/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , ADN/genética , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Oro/química , Ácidos Nucleicos Inmovilizados/genética , Hibridación de Ácido Nucleico , Ácidos Nucleicos de Péptidos/genética , Polilisina/química , Silicio/química
7.
Exp Cell Res ; 382(1): 111445, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152707

RESUMEN

MicroRNAs (miRNA) are small noncoding RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, thereby determining their degradation or inhibiting translation. They are involved in processes such as proliferation, differentiation and apoptosis by fine-tuning the expression of genes underlying such events. The expression of specific miRNAs is involved in hematopoietic differentiation and their deregulation contributes to the development of hematopoietic malignancies such as acute myeloid leukemia (AML). miR-130a is over-expressed in AML. Here we show that miR-130a is physiologically expressed in myeloblasts and down-regulated during monocyte differentiation. Gain- and loss-of-function experiments performed on CD34+ human hematopoietic stem cells confirmed that expression of miR-130a inhibits monocyte differentiation by interfering with the expression of key transcription factors HOXA10, IRF8, KLF4, MAFB and PU-1. The data obtained in this study highlight that the correct modulation of miR-130a is necessary for normal differentiation to occur and confirming that deregulation of this miRNA might underlie the differentiation block occurring in AML.


Asunto(s)
Regulación de la Expresión Génica , Células Precursoras de Granulocitos/metabolismo , Células Madre Hematopoyéticas/metabolismo , MicroARNs/fisiología , Monocitos/citología , Mielopoyesis/fisiología , Proteínas de Neoplasias/fisiología , Antígenos CD34/análisis , Línea Celular Tumoral , Linaje de la Célula , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Mutación con Ganancia de Función , Células Precursoras de Granulocitos/citología , Células Madre Hematopoyéticas/citología , Humanos , Factor 4 Similar a Kruppel , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación con Pérdida de Función , MicroARNs/antagonistas & inhibidores , MicroARNs/biosíntesis , MicroARNs/genética , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Ácidos Nucleicos de Péptidos/farmacología , ARN Neoplásico/genética , ARN Neoplásico/fisiología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
8.
Molecules ; 25(7)2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32260566

RESUMEN

Peptide nucleic acids (PNAs) have been demonstrated to be very useful tools for gene regulation at different levels and with different mechanisms of action. In the last few years the use of PNAs for targeting microRNAs (anti-miRNA PNAs) has provided impressive advancements. In particular, targeting of microRNAs involved in the repression of the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is defective in cystic fibrosis (CF), is a key step in the development of new types of treatment protocols. In addition to the anti-miRNA therapeutic strategy, inhibition of miRNA functions can be reached by masking the miRNA binding sites present within the 3'UTR region of the target mRNAs. The objective of this study was to design a PNA masking the binding site of the microRNA miR-145-5p present within the 3'UTR of the CFTR mRNA and to determine its activity in inhibiting miR-145-5p function, with particular focus on the expression of both CFTR mRNA and CFTR protein in Calu-3 cells. The results obtained support the concept that the PNA masking the miR-145-5p binding site of the CFTR mRNA is able to interfere with miR-145-5p biological functions, leading to both an increase of CFTR mRNA and CFTR protein content.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , MicroARNs/metabolismo , Ácidos Nucleicos de Péptidos/metabolismo , Regiones no Traducidas 3'/genética , Sitios de Unión/genética , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , MicroARNs/genética
9.
Sensors (Basel) ; 19(3)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704111

RESUMEN

A new amperometric sandwich-format genosensor has been implemented on single-walled carbon nanotubes screen printed electrodes (SWCNT-SPEs) and compared in terms of performance with analogous genoassays developed using the same methodology on non-nanostructured glassy carbon platforms (GC-SPE). The working principle of the genosensors is based on the covalent immobilization of Peptide Nucleic Acid (PNA) capture probes (CP) on the electrode surface, carried out through the carboxylic functions present on SWCNT-SPEs (carboxylated SWCNT) or electrochemically induced on GC-SPEs. The sequence of the CP was complementary to a 20-mer portion of the target DNA; a second biotin-tagged PNA signalling probe (SP), with sequence complementary to a different contiguous portion of the target DNA, was used to obtain a sandwich hybrid with an Alkaline Phosphatase-streptavidin conjugate (ALP-Strp). Comparison of the responses obtained from the SWCNT-SPEs with those produced from the non-nanostructured substrates evidenced the remarkable enhancement effect given by the nanostructured electrode platforms, achieved both in terms of loading capability of PNA probes and amplification of the electron transfer phenomena exploited for the signal transduction, giving rise to more than four-fold higher sensitivity when using SWCNT-SPEs. The nanostructured substrate allowed to reach limit of detection (LOD) of 71 pM and limit of quantitation (LOQ) of 256 pM, while the corresponding values obtained with GC-SPEs were 430 pM and 1.43 nM, respectively.

10.
Bioconjug Chem ; 29(12): 4110-4118, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30412384

RESUMEN

Biosensors and materials for biomedical applications generally require chemical functionalization to bestow their surfaces with desired properties, such as specific molecular recognition and antifouling properties. The use of modified poly(l-lysine) (PLL) polymers with appended oligo(ethylene glycol) (OEG) and thiol-reactive maleimide (Mal) moieties (PLL-OEG-Mal) offers control over the presentation of functional groups. These reactive groups can readily be conjugated to, for example, probes for DNA detection. Here we demonstrate the reliable conjugation of thiol-functionalized peptide nucleic acid (PNA) probes onto predeposited layers of PLL-OEG-Mal and the control over their surface density in the preceding synthetic step of the PLL modification with Mal groups. By monitoring the quartz crystal microbalance (QCM) frequency shifts of the binding of complementary DNA versus the density of Mal moieties grafted to the PLL, a linear relationship between probe density and PLL grafting density was found. Cyclic voltammetry experiments using Methylene Blue-functionalized DNA were performed to establish the absolute probe density values at the biosensor surfaces. These data provided a density of 1.2 × 1012 probes per cm2 per % of grafted Mal, thus confirming the validity of the density control in the synthetic PLL modification step without the need of further surface characterization.


Asunto(s)
Técnicas Biosensibles , ADN/química , Sondas Moleculares , Polilisina/química , Ácidos Nucleicos de Péptidos/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie
11.
Langmuir ; 34(38): 11395-11404, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30179484

RESUMEN

Silicon nanowire chips can function as sensors for cancer DNA detection, whereby selective functionalization of the Si sensing areas over the surrounding silicon oxide would prevent loss of analyte and thus increase the sensitivity. The thermal hydrosilylation of unsaturated carbon-carbon bonds onto H-terminated Si has been studied here to selectively functionalize the Si nanowires with a monolayer of 1,8-nonadiyne. The silicon oxide areas, however, appeared to be functionalized as well. The selectivity toward the Si-H regions was increased by introducing an extra HF treatment after the 1,8-nonadiyne monolayer formation. This step (partly) removed the monolayer from the silicon oxide regions, whereas the Si-C bonds at the Si areas remained intact. The alkyne headgroups of immobilized 1,8-nonadiyne were functionalized with PNA probes by coupling azido-PNA and thiol-PNA by click chemistry and thiol-yne chemistry, respectively. Although both functionalization routes were successful, hybridization could only be detected on the samples with thiol-PNA. No fluorescence was observed when introducing dye-labeled noncomplementary DNA, which indicates specific DNA hybridization. These results open up the possibilities for creating Si nanowire-based DNA sensors with improved selectivity and sensitivity.


Asunto(s)
Nanocables/química , Óxidos/química , Ácidos Nucleicos de Péptidos/química , Compuestos de Silicona/química , Silicio/química , Alquinos/química , Química Clic , ADN/química , Hibridación de Ácido Nucleico
12.
Molecules ; 23(8)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096770

RESUMEN

Polyamide analogs of DNA, or peptide nucleic acid (PNA), were first proposed in 1991 by a group of chemists and biochemists in a memorable Science paper [1].[…].


Asunto(s)
Ácidos Nucleicos de Péptidos/química , ADN/química , Edición Génica , Nanotecnología , Polimorfismo de Nucleótido Simple/genética
13.
Chemistry ; 23(17): 4180-4186, 2017 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-28139850

RESUMEN

A DNA-sensing platform is developed by exploiting the easy surface functionalization of metal-organic framework (MOF) particles and their highly parallelized fluorescence detection by flow cytometry. Two strategies were employed to functionalize the surface of MIL-88A, using either covalent or non-covalent interactions, resulting in alkyne-modified and biotin-modified MIL-88A, respectively. Covalent surface coupling of an azide-dye and the alkyne-MIL-88A was achieved by means of a click reaction. Non-covalent streptavidin-biotin interactions were employed to link biotin-PNA to biotin-MIL-88A particles mediated by streptavidin. Characterization by confocal imaging and flow cytometry demonstrated that DNA can be bound selectively to the MOF surface. Flow cytometry provided quantitative data of the interaction with DNA. Making use of the large numbers of particles that can be simultaneously processed by flow cytometry, this MOF platform was able to discriminate between fully complementary, single-base mismatched, and randomized DNA targets.


Asunto(s)
ADN/análisis , Compuestos Férricos/química , Estructuras Metalorgánicas/química , Ácidos Nucleicos de Péptidos/química , Alquinos/química , Azidas/química , Biotina/química , Química Clic , Reacción de Cicloadición , Fluorescencia , Colorantes Fluorescentes/química , Tamaño de la Partícula , Polietilenglicoles/química , Estreptavidina/química , Propiedades de Superficie
14.
Molecules ; 22(11)2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29156637

RESUMEN

Over the past decades, peptide nucleic acid/DNA (PNA:DNA) duplex stability has been improved via backbone modification, often achieved via introducing an amino acid side chain at the α- or γ-position in the PNA sequence. It was previously shown that interstrand cross-linking can further enhance the binding event. In this work, we combined both strategies to fine-tune PNA crosslinking towards single stranded DNA sequences using a furan oxidation-based crosslinking method; for this purpose, γ-l-lysine and γ-l-arginine furan-PNA monomers were synthesized and incorporated in PNA sequences via solid phase synthesis. It was shown that the l-lysine γ-modification had a beneficial effect on crosslink efficiency due to pre-organization of the PNA helix and a favorable electrostatic interaction between the positively-charged lysine and the negatively-charged DNA backbone. Moreover, the crosslink yield could be optimized by carefully choosing the type of furan PNA monomer. This work is the first to describe a selective and biocompatible furan crosslinking strategy for crosslinking of γ-modified PNA sequences towards single-stranded DNA.


Asunto(s)
Furanos/química , Ácidos Nucleicos de Péptidos/química , ADN/química , ADN de Cadena Simple/química
15.
Molecules ; 23(1)2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29286300

RESUMEN

Peptide nucleic acids (PNAs) are very useful tools for gene regulation at different levels, but in particular in the last years their use for targeting microRNA (anti-miR PNAs) has provided impressive advancements. In this respect, microRNAs related to the repression of cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is defective in cystic fibrosis, are of great importance in the development of new type of treatments. In this paper we propose the use of an anti-miR PNA for targeting miR-145, a microRNA reported to suppress CFTR expression. Octaarginine-anti-miR PNA conjugates were delivered to Calu-3 cells, exerting sequence dependent targeting of miR-145-5p. This allowed to enhance expression of the miR-145 regulated CFTR gene, analyzed at mRNA (RT-qPCR, Reverse Transcription quantitative Polymerase Chain Reaction) and CFTR protein (Western blotting) level.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/metabolismo , Ácidos Nucleicos de Péptidos/farmacología , Regiones no Traducidas 3'/genética , Apoptosis/efectos de los fármacos , Secuencia de Bases , Sitios de Unión , Línea Celular , Proliferación Celular/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Evolución Molecular , Humanos , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/efectos de los fármacos
16.
Angew Chem Int Ed Engl ; 55(10): 3323-7, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26643574

RESUMEN

The direct delivery of specific proteins to live cells promises a tremendous impact for biological and medical applications, from therapeutics to genetic engineering. However, the process mostly involves tedious techniques and often requires extensive alteration of the protein itself. Herein we report a straightforward approach to encapsulate native proteins by using breakable organosilica matrices that disintegrate upon exposure to a chemical stimulus. The biomolecule-containing capsules were tested for the intracellular delivery of highly cytotoxic proteins into C6 glioma cells. We demonstrate that the shell is broken, the release of the active proteins occurs, and therefore our hybrid architecture is a promising strategy to deliver fragile biomacromolecules into living organisms.


Asunto(s)
Nanocápsulas , Compuestos de Organosilicio/administración & dosificación , Proteínas/administración & dosificación , Microscopía Electrónica de Transmisión , Espectrofotometría Ultravioleta
17.
Small ; 11(42): 5687-95, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26395266

RESUMEN

Mesoporous silica nanoparticles (MSNPs), 100 nm in size, incorporating a Cy5 fluorophore within the silica framework, are synthesized and loaded with the anti-cancer drug temozolomide (TMZ), used in the treatment of gliomas. The surface of the particles is then decorated, using electrostatic interactions, with a polyarginine-peptide nucleic acid (R8-PNA) conjugate targeting the miR221 microRNA. The multi-functional nanosystem thus obtained is rapidly internalized into glioma C6 or T98G cells. The anti-miR activity of the PNA is retained, as confirmed by reverse transcription polymerase chain reaction (RT-PCR) measurements and induction of apoptosis is observed in temozolomide-resistant cell lines. The TMZ-loaded MSNPs show an enhanced pro-apoptotic effect, and the combined effect of TMZ and R8-PNA in the MSNPs shows the most effective induction of apoptosis (70.9% of apoptotic cells) thus far achieved in the temozolomide-resistant T98G cell line.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Dacarbazina/análogos & derivados , Glioma/tratamiento farmacológico , MicroARNs/antagonistas & inhibidores , Nanopartículas/uso terapéutico , Ácidos Nucleicos de Péptidos/administración & dosificación , Dióxido de Silicio/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Dacarbazina/administración & dosificación , Dacarbazina/farmacología , Combinación de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Glioma/patología , Humanos , Nanopartículas/química , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/farmacología , Péptidos/administración & dosificación , Péptidos/química , Péptidos/farmacología , Porosidad , Ratas , Dióxido de Silicio/uso terapéutico , Temozolomida
18.
Chirality ; 27(12): 864-74, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26412743

RESUMEN

Parallel PNA:PNA duplexes were synthesized and conjugated with meso-tris(pyridyl)phenylporphyrin carboxylic acid at the N-terminus. The introduction of one porphyrin unit was shown to affect slightly the stability of the PNA:PNA parallel duplex, whereas the presence of two porphyrin units at the same end resulted in a dramatic increase of the melting temperature, accompanied by hysteresis between melting and cooling curves. The circular dichroism (CD) profile of the Soret band and fluorescence quenching strongly support the occurrence of a face-to-face interaction between the two porphyrin units. Introduction of a L-lysine residue at the C-terminal of one strand of the parallel duplex induced a left-handed helical structure in the PNA:PNA duplex if the latter contains only one or no porphyrin moiety. The left-handed helicity was revealed by nucleobase CD profile at 240-280 nm and by the induced-CD observed in the presence of the DiSC2 (5) cyanine dye at ~500-550 nm. Surprisingly, the presence of two porphyrin units led to the disappearance of the nucleobase CD signal and the absence of CD exciton coupling within the Soret band region. In addition, a dramatic decrease of induced CD of DiSC2 (5) was observed. These results are in agreement with a model where the porphyrin-porphyrin interactions cause partial loss of chirality of the PNA:PNA parallel duplex, forcing it to adopt a ladder-like conformation.


Asunto(s)
Ácidos Nucleicos de Péptidos/química , Porfirinas/química , Dicroismo Circular , Estructura Molecular , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
20.
Chemistry ; 20(35): 10900-4, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25042168

RESUMEN

The design and synthesis of multifunctional nanomaterials could lead to applications relevant for biomedicine. Manufacturing porous particles to make them able to carry bioactive molecules into living cells represents a substantial goal towards the development of powerful tools for nanomedicine. This work describes a first example of using zeolite-L crystals as multifunctional nanocontainers to simultaneously deliver DNA oligonucleotides and organic molecules into living cells. Multifunctional zeolite-L was prepared by filling the pore system with guest molecules, whilst DNA was adsorbed electrostatically on their surface. The release kinetics of DNA and of the guest molecules into living cells was studied to prove the multiple-drug-delivery ability of the system. The localization of all the components in different cellular compartments was followed. The presented system may be a prototype for the development of novel nanoparticles for drug delivery and gene therapy.


Asunto(s)
ADN/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Células HeLa , Humanos , Microscopía Confocal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA