Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(5): 1482-1503, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38366121

RESUMEN

A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its "hit-and-run" mode of target gene regulation, and temporal transcriptional cascade identified by "network walking." Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.


Asunto(s)
Redes Reguladoras de Genes , Nitrógeno , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046022

RESUMEN

Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type-specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the Arabidopsis thaliana root as a function of time. We found that gene-expression response to nitrate is dynamic and highly localized and predicted cell type-specific transcription factor (TF)-target interactions. Among cell types, the endodermis stands out as having the largest and most connected nitrate-regulatory gene network. ABF2 and ABF3 are major hubs for transcriptional responses in the endodermis cell layer. We experimentally validated TF-target interactions for ABF2 and ABF3 by chromatin immunoprecipitation followed by sequencing and a cell-based system to detect TF regulation genome-wide. Validated targets of ABF2 and ABF3 account for more than 50% of the nitrate-responsive transcriptome in the endodermis. Moreover, ABF2 and ABF3 are involved in nitrate-induced lateral root growth. Our approach offers an unprecedented spatiotemporal resolution of the root response to nitrate and identifies important components of cell-specific gene regulatory networks.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Fenómenos Fisiológicos de las Plantas , Factores de Transcripción/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Biología Computacional/métodos , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Modelos Biológicos , Especificidad de Órganos/genética , Raíces de Plantas/fisiología , Factores de Transcripción/metabolismo , Transcriptoma
3.
J Exp Bot ; 75(11): 3596-3611, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38477678

RESUMEN

The best ideotypes are under mounting pressure due to increased aridity. Understanding the conserved molecular mechanisms that evolve in wild plants adapted to harsh environments is crucial in developing new strategies for agriculture. Yet our knowledge of such mechanisms in wild species is scant. We performed metabolic pathway reconstruction using transcriptome information from 32 Atacama and phylogenetically related species that do not live in Atacama (sister species). We analyzed reaction enrichment to understand the commonalities and differences of Atacama plants. To gain insights into the mechanisms that ensure survival, we compared expressed gene isoform numbers and gene expression patterns between the annotated biochemical reactions from 32 Atacama and sister species. We found biochemical convergences characterized by reactions enriched in at least 50% of the Atacama species, pointing to potential advantages against drought and nitrogen starvation, for instance. These findings suggest that the adaptation in the Atacama Desert may result in part from shared genetic legacies governing the expression of key metabolic pathways to face harsh conditions. Enriched reactions corresponded to ubiquitous compounds common to extreme and agronomic species and were congruent with our previous metabolomic analyses. Convergent adaptive traits offer promising candidates for improving abiotic stress resilience in crop species.


Asunto(s)
Clima Desértico , Filogenia , Transcriptoma , Chile , Adaptación Fisiológica , Redes y Vías Metabólicas
4.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34725254

RESUMEN

The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.


Asunto(s)
Plantas/genética , Altitud , Chile , Cambio Climático , Clima Desértico , Ecosistema , Genómica/métodos , Filogenia , Suelo , Microbiología del Suelo
5.
BMC Bioinformatics ; 24(1): 114, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964499

RESUMEN

This study evaluates both a variety of existing base causal inference methods and a variety of ensemble methods. We show that: (i) base network inference methods vary in their performance across different datasets, so a method that works poorly on one dataset may work well on another; (ii) a non-homogeneous ensemble method in the form of a Naive Bayes classifier leads overall to as good or better results than using the best single base method or any other ensemble method; (iii) for the best results, the ensemble method should integrate all methods that satisfy a statistical test of normality on training data. The resulting ensemble model EnsInfer easily integrates all kinds of RNA-seq data as well as new and existing inference methods. The paper categorizes and reviews state-of-the-art underlying methods, describes the EnsInfer ensemble approach in detail, and presents experimental results. The source code and data used will be made available to the community upon publication.


Asunto(s)
Algoritmos , Programas Informáticos , Teorema de Bayes , RNA-Seq
6.
Plant J ; 109(4): 764-778, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797944

RESUMEN

As sessile organisms, plants are finely tuned to respond dynamically to developmental, circadian and environmental cues. Genome-wide studies investigating these types of cues have uncovered the intrinsically different ways they can impact gene expression over time. Recent advances in single-cell sequencing and time-based bioinformatic algorithms are now beginning to reveal the dynamics of these time-based responses within individual cells and plant tissues. Here, we review what these techniques have revealed about the spatiotemporal nature of gene regulation, paying particular attention to the three distinct ways in which plant tissues are time sensitive. (i) First, we discuss how studying plant cell identity can reveal developmental trajectories hidden in pseudotime. (ii) Next, we present evidence that indicates that plant cell types keep their own local time through tissue-specific regulation of the circadian clock. (iii) Finally, we review what determines the speed of environmental signaling responses, and how they can be contingent on developmental and circadian time. By these means, this review sheds light on how these different scales of time-based responses can act with tissue and cell-type specificity to elicit changes in whole plant systems.


Asunto(s)
Biología , Relojes Circadianos/fisiología , Señales (Psicología) , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Plantas , Biosíntesis de Proteínas
7.
Plant Cell ; 32(7): 2094-2119, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32169959

RESUMEN

Nitrogen (N) is an essential macronutrient for plants and a major limiting factor for plant growth and crop production. Nitrate is the main source of N available to plants in agricultural soils and in many natural environments. Sustaining agricultural productivity is of paramount importance in the current scenario of increasing world population, diversification of crop uses, and climate change. Plant productivity for major crops around the world, however, is still supported by excess application of N-rich fertilizers with detrimental economic and environmental impacts. Thus, understanding how plants regulate nitrate uptake and metabolism is key for developing new crops with enhanced N use efficiency and to cope with future world food demands. The study of plant responses to nitrate has gained considerable interest over the last 30 years. This review provides an overview of key findings in nitrate research, spanning biochemistry, molecular genetics, genomics, and systems biology. We discuss how we have reached our current view of nitrate transport, local and systemic nitrate sensing/signaling, and the regulatory networks underlying nitrate-controlled outputs in plants. We hope this summary will serve not only as a timeline and information repository but also as a baseline to define outstanding questions for future research.


Asunto(s)
Nitratos/metabolismo , Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Transporte Biológico , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Transportadores de Nitrato , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(23): 12531-12540, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32414922

RESUMEN

An increase in nutrient dose leads to proportional increases in crop biomass and agricultural yield. However, the molecular underpinnings of this nutrient dose-response are largely unknown. To investigate, we assayed changes in the Arabidopsis root transcriptome to different doses of nitrogen (N)-a key plant nutrient-as a function of time. By these means, we found that rate changes of genome-wide transcript levels in response to N-dose could be explained by a simple kinetic principle: the Michaelis-Menten (MM) model. Fitting the MM model allowed us to estimate the maximum rate of transcript change (Vmax), as well as the N-dose at which one-half of Vmax was achieved (Km) for 1,153 N-dose-responsive genes. Since transcription factors (TFs) can act in part as the catalytic agents that determine the rates of transcript change, we investigated their role in regulating N-dose-responsive MM-modeled genes. We found that altering the abundance of TGA1, an early N-responsive TF, perturbed the maximum rates of N-dose transcriptomic responses (Vmax), Km, as well as the rate of N-dose-responsive plant growth. We experimentally validated that MM-modeled N-dose-responsive genes included both direct and indirect TGA1 targets, using a root cell TF assay to detect TF binding and/or TF regulation genome-wide. Taken together, our results support a molecular mechanism of transcriptional control that allows an increase in N-dose to lead to a proportional change in the rate of genome-wide expression and plant growth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Desarrollo de la Planta , Transcriptoma , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cinética
9.
Plant Physiol ; 185(1): 49-66, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631799

RESUMEN

Deciphering gene regulatory networks (GRNs) is both a promise and challenge of systems biology. The promise lies in identifying key transcription factors (TFs) that enable an organism to react to changes in its environment. The challenge lies in validating GRNs that involve hundreds of TFs with hundreds of thousands of interactions with their genome-wide targets experimentally determined by high-throughput sequencing. To address this challenge, we developed ConnecTF, a species-independent, web-based platform that integrates genome-wide studies of TF-target binding, TF-target regulation, and other TF-centric omic datasets and uses these to build and refine validated or inferred GRNs. We demonstrate the functionality of ConnecTF by showing how integration within and across TF-target datasets uncovers biological insights. Case study 1 uses integration of TF-target gene regulation and binding datasets to uncover TF mode-of-action and identify potential TF partners for 14 TFs in abscisic acid signaling. Case study 2 demonstrates how genome-wide TF-target data and automated functions in ConnecTF are used in precision/recall analysis and pruning of an inferred GRN for nitrogen signaling. Case study 3 uses ConnecTF to chart a network path from NLP7, a master TF in nitrogen signaling, to direct secondary TF2s and to its indirect targets in a Network Walking approach. The public version of ConnecTF (https://ConnecTF.org) contains 3,738,278 TF-target interactions for 423 TFs in Arabidopsis, 839,210 TF-target interactions for 139 TFs in maize (Zea mays), and 293,094 TF-target interactions for 26 TFs in rice (Oryza sativa). The database and tools in ConnecTF will advance the exploration of GRNs in plant systems biology applications for model and crop species.


Asunto(s)
Arabidopsis/genética , Bases de Datos como Asunto , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Oryza/genética , Factores de Transcripción/genética , Zea mays/genética , Productos Agrícolas/genética , Genes de Plantas
10.
Plant Physiol ; 182(1): 215-227, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31641075

RESUMEN

Chromatin modification has gained increased attention for its role in the regulation of plant responses to environmental changes, but the specific mechanisms and molecular players remain elusive. Here, we show that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) mediates genome-wide changes in H3K36 methylation at specific genomic loci functionally relevant to nitrate treatments. Moreover, we show that the specific H3K36 methyltransferase encoded by SDG8 is required for canonical RNA processing, and that RNA isoform switching is more prominent in the sdg8-5 deletion mutant than in the wild type. To demonstrate that SDG8-mediated regulation of RNA isoform expression is functionally relevant, we examined a putative regulatory gene, CONSTANS, CO-like, and TOC1 101 (CCT101), whose nitrogen-responsive isoform-specific RNA expression is mediated by SDG8. We show by functional expression in shoot cells that the different RNA isoforms of CCT101 encode distinct regulatory proteins with different effects on genome-wide transcription. We conclude that SDG8 is involved in plant responses to environmental nitrogen supply, affecting multiple gene regulatory processes including genome-wide histone modification, transcriptional regulation, and RNA processing, and thereby mediating developmental and metabolic processes related to nitrogen use.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Nitratos/farmacología , ARN de Planta/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , N-Metiltransferasa de Histona-Lisina/genética , Metilación/efectos de los fármacos , ARN de Planta/genética
11.
J Exp Bot ; 72(10): 3881-3901, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33758916

RESUMEN

Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(25): 6494-6499, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29769331

RESUMEN

This study exploits time, the relatively unexplored fourth dimension of gene regulatory networks (GRNs), to learn the temporal transcriptional logic underlying dynamic nitrogen (N) signaling in plants. Our "just-in-time" analysis of time-series transcriptome data uncovered a temporal cascade of cis elements underlying dynamic N signaling. To infer transcription factor (TF)-target edges in a GRN, we applied a time-based machine learning method to 2,174 dynamic N-responsive genes. We experimentally determined a network precision cutoff, using TF-regulated genome-wide targets of three TF hubs (CRF4, SNZ, and CDF1), used to "prune" the network to 155 TFs and 608 targets. This network precision was reconfirmed using genome-wide TF-target regulation data for four additional TFs (TGA1, HHO5/6, and PHL1) not used in network pruning. These higher-confidence edges in the GRN were further filtered by independent TF-target binding data, used to calculate a TF "N-specificity" index. This refined GRN identifies the temporal relationship of known/validated regulators of N signaling (NLP7/8, TGA1/4, NAC4, HRS1, and LBD37/38/39) and 146 additional regulators. Six TFs-CRF4, SNZ, CDF1, HHO5/6, and PHL1-validated herein regulate a significant number of genes in the dynamic N response, targeting 54% of N-uptake/assimilation pathway genes. Phenotypically, inducible overexpression of CRF4 in planta regulates genes resulting in altered biomass, root development, and 15NO3- uptake, specifically under low-N conditions. This dynamic N-signaling GRN now provides the temporal "transcriptional logic" for 155 candidate TFs to improve nitrogen use efficiency with potential agricultural applications. Broadly, these time-based approaches can uncover the temporal transcriptional logic for any biological response system in biology, agriculture, or medicine.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Nitrógeno/metabolismo , Transcripción Genética/genética , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , Lógica , Unión Proteica/genética , Transducción de Señal/genética , Factores de Transcripción/genética
14.
Plant Physiol ; 181(3): 1371-1388, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31409699

RESUMEN

Plant responses to multiple environmental stimuli must be integrated to enable them to adapt their metabolism and development. Light and nitrogen (N) are two such stimuli whose downstream signaling pathways must be intimately connected to each other to control plant energy status. Here, we describe the functional role of the WRKY1 transcription factor in controlling genome-wide transcriptional reprogramming of Arabidopsis (Arabidopsis thaliana) leaves in response to individual and combined light and N signals. This includes a cross-regulatory network consisting of 724 genes regulated by WRKY1 and involved in both N and light signaling pathways. The loss of WRKY1 gene function has marked effects on the light and N response of genes involved in N uptake and assimilation (primary metabolism) as well as stress response pathways (secondary metabolism). Our results at the transcriptome and at the metabolite analysis level support a model in which WRKY1 enables plants to activate genes involved in the recycling of cellular carbon resources when light is limiting but N is abundant and upregulate amino acid metabolism when both light and N are limiting. In this potential energy conservation mechanism, WRKY1 integrates information about cellular N and light energy resources to trigger changes in plant metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Luz , Nitrógeno/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación , Factores de Transcripción/genética
15.
J Exp Bot ; 71(15): 4442-4451, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31990028

RESUMEN

Nitrogen (N) and water (W) are crucial inputs for plant survival as well as costly resources for agriculture. Given their importance, the molecular mechanisms that plants rely on to signal changes in either N or W status have been under intense scrutiny. However, how plants sense and respond to the combination of N and W signals at the molecular level has received scant attention. The purpose of this review is to shed light on what is currently known about how plant responses to N are impacted by W status. We review classic studies which detail how N and W combinations have both synergistic and antagonistic effects on key plant traits, such as root architecture and stomatal aperture. Recent molecular studies of N and W interactions show that mutations in genes involved in N metabolism affect drought responses, and vice versa. Specifically, perturbing key N signaling genes may lead to changes in drought-responsive gene expression programs, which is supported by a meta-analysis we conduct on available transcriptomic data. Additionally, we cite studies that show how combinatorial transcriptional responses to N and W status might drive crop phenotypes. Through these insights, we suggest research strategies that could help to develop crops adapted to marginal soils depleted in both N and W, an important task in the face of climate change.


Asunto(s)
Nitrógeno , Agua , Agricultura , Productos Agrícolas , Sequías
16.
Plant Cell ; 29(10): 2393-2412, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28893852

RESUMEN

Shaping of root architecture is a quintessential developmental response that involves the concerted action of many different cell types, is highly dynamic, and underpins root plasticity. To determine to what extent the environmental regulation of lateral root development is a product of cell-type preferential activities, we tracked transcriptomic responses to two different treatments that both change root development in Arabidopsis thaliana at an unprecedented level of temporal detail. We found that individual transcripts are expressed with a very high degree of temporal and spatial specificity, yet biological processes are commonly regulated, in a mechanism we term response nonredundancy. Using causative gene network inference to compare the genes regulated in different cell types and during responses to nitrogen and a biotic interaction, we found that common transcriptional modules often regulate the same gene families but control different individual members of these families, specific to response and cell type. This reinforces that the activity of a gene cannot be defined simply as molecular function; rather, it is a consequence of spatial location, expression timing, and environmental responsiveness.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Raíces de Plantas/genética
17.
Trends Genet ; 31(9): 509-15, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26072453

RESUMEN

Modeling dynamic gene regulatory networks (GRNs) is a new frontier in systems biology. It has special implications for plants, whose survival requires rapid deployment of GRNs in response to environmental changes. However, capturing and dissecting transient interactions of transcription factors (TFs) and their targets in GRNs remains a considerable experimental challenge. Here we review recent progress in understanding GRNs as a function of time and discuss the relevance of these findings in plants to studies in other eukaryotes. We cover progress in profiling and modeling time-course transcriptome changes across plant species and the insights they have provided into the regulatory mechanisms underlying these temporal transcriptional responses, with a focus on the dynamic behavior of TFs. Lastly, we review state-of-the-art techniques to monitor the single-molecule dynamics of TFs in vivo. Together, these advances have helped develop new models for dynamic transcriptional control with relevance across eukaryotes.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Evolución Molecular , Humanos , Factores de Tiempo
18.
Bioessays ; 37(8): 851-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26108710

RESUMEN

Understanding how transcription factor (TF) binding is related to gene regulation is a moving target. We recently uncovered genome-wide evidence for a "Hit-and-Run" model of transcription. In this model, a master TF "hits" a target promoter to initiate a rapid response to a signal. As the "hit" is transient, the model invokes recruitment of partner TFs to sustain transcription over time. Following the "run", the master TF "hits" other targets to propagate the response genome-wide. As such, a TF may act as a "catalyst" to mount a broad and acute response in cells that first sense the signal, while the recruited TF partners promote long-term adaptive behavior in the whole organism. This "Hit-and-Run" model likely has broad relevance, as TF perturbation studies across eukaryotes show small overlaps between TF-regulated and TF-bound genes, implicating transient TF-target binding. Here, we explore this "Hit-and-Run" model to suggest molecular mechanisms and its biological relevance.


Asunto(s)
Ensamble y Desensamble de Cromatina , Factores de Transcripción/fisiología , Animales , Cromatina , Redes Reguladoras de Genes , Genes de Plantas , Histonas/fisiología , Humanos , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional
19.
PLoS Genet ; 10(7): e1004487, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25032823

RESUMEN

Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant-microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages.


Asunto(s)
Evolución Molecular , Micorrizas/genética , Filogenia , Simbiosis/genética , Arabidopsis/genética , Arabidopsis/microbiología , Redes Reguladoras de Genes , Genómica , Micorrizas/crecimiento & desarrollo
20.
Proc Natl Acad Sci U S A ; 111(28): 10371-6, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24958886

RESUMEN

The dynamic nature of gene regulatory networks allows cells to rapidly respond to environmental change. However, the underlying temporal connections are missed, even in kinetic studies, as transcription factor (TF) binding within at least one time point is required to identify primary targets. The TF-regulated but unbound genes are dismissed as secondary targets. Instead, we report that these genes comprise transient TF-target interactions most relevant to rapid signal transduction. We temporally perturbed a master TF (Basic Leucine Zipper 1, bZIP1) and the nitrogen (N) signal it transduces and integrated TF regulation and binding data from the same cell samples. Our enabling approach could identify primary TF targets based solely on gene regulation, in the absence of TF binding. We uncovered three classes of primary TF targets: (i) poised (TF-bound but not TF-regulated), (ii) stable (TF-bound and TF-regulated), and (iii) transient (TF-regulated but not TF-bound), the largest class. Unexpectedly, the transient bZIP1 targets are uniquely relevant to rapid N signaling in planta, enriched in dynamic N-responsive genes, and regulated by TF and N signal interactions. These transient targets include early N responders nitrate transporter 2.1 and NIN-like protein 3, bound by bZIP1 at 1-5 min, but not at later time points following TF perturbation. Moreover, promoters of these transient targets are uniquely enriched with cis-regulatory motifs coinherited with bZIP1 binding sites, suggesting a recruitment role for bZIP1. This transient mode of TF action supports a classic, but forgotten, "hit-and-run" transcription model, which enables a "catalyst TF" to activate a large set of targets within minutes of signal perturbation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Nitrógeno/metabolismo , Elementos de Respuesta/fisiología , Transducción de Señal/fisiología , Proteínas de Transporte de Anión/biosíntesis , Proteínas de Transporte de Anión/genética , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA