Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(48): 14936-41, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627243

RESUMEN

Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.


Asunto(s)
Adaptación Fisiológica/genética , Enfermedad de Chagas , Interacciones Huésped-Parásitos/genética , Insectos Vectores , Rhodnius , Trypanosoma cruzi/fisiología , Animales , Secuencia de Bases , Transferencia de Gen Horizontal , Humanos , Insectos Vectores/genética , Insectos Vectores/parasitología , Datos de Secuencia Molecular , Rhodnius/genética , Rhodnius/parasitología , Wolbachia/genética
2.
Curr Protein Pept Sci ; 24(7): 567-578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37345241

RESUMEN

Due to the excessive and inappropriate use of antibiotics in farming and clinic, pathogens developed resistance mechanisms to currently used drugs. Thus, because of this resistance, drugs become ineffective, leading to public health problems worldwide. According to the World Health Organization (WHO), microbial resistance to drugs is one of the most threats that humanity must face. Therefore, it is imperative to seek alternative methods to overcome microbial resistance. Here, the potential of natural or synthetic antimicrobial peptides to overcome microbial resistance will be discussed, and how peptides could be a source for new therapeutics molecules. In this context, antimicrobial peptides (natural or synthetic) are considered promising molecules based on their antifungal, antiviral, and antibacterial properties, making them eligible for developing new drugs. In addition, they can act synergistically with existing drugs on the market, revealing a broad spectrum of applications.


Asunto(s)
Antibacterianos , Péptidos , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Antibacterianos/farmacología , Antibacterianos/química , Antifúngicos , Antivirales , Péptidos Antimicrobianos
3.
Res Integr Peer Rev ; 5(1): 16, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33292815

RESUMEN

BACKGROUND: Preprint usage is growing rapidly in the life sciences; however, questions remain on the relative quality of preprints when compared to published articles. An objective dimension of quality that is readily measurable is completeness of reporting, as transparency can improve the reader's ability to independently interpret data and reproduce findings. METHODS: In this observational study, we initially compared independent samples of articles published in bioRxiv and in PubMed-indexed journals in 2016 using a quality of reporting questionnaire. After that, we performed paired comparisons between preprints from bioRxiv to their own peer-reviewed versions in journals. RESULTS: Peer-reviewed articles had, on average, higher quality of reporting than preprints, although the difference was small, with absolute differences of 5.0% [95% CI 1.4, 8.6] and 4.7% [95% CI 2.4, 7.0] of reported items in the independent samples and paired sample comparison, respectively. There were larger differences favoring peer-reviewed articles in subjective ratings of how clearly titles and abstracts presented the main findings and how easy it was to locate relevant reporting information. Changes in reporting from preprints to peer-reviewed versions did not correlate with the impact factor of the publication venue or with the time lag from bioRxiv to journal publication. CONCLUSIONS: Our results suggest that, on average, publication in a peer-reviewed journal is associated with improvement in quality of reporting. They also show that quality of reporting in preprints in the life sciences is within a similar range as that of peer-reviewed articles, albeit slightly lower on average, supporting the idea that preprints should be considered valid scientific contributions.

4.
Nutrients ; 7(1): 1-16, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25545100

RESUMEN

Essential amino acids (EAA) consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS) and betaine-homocysteine S-methyltransferase (BHMT) diverged from the expected Tree of Life (ToL) relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.


Asunto(s)
Aminoácidos Esenciales/biosíntesis , Secuencia Conservada/genética , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Secuencia de Aminoácidos , Animales , Betaína-Homocisteína S-Metiltransferasa/genética , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Evolución Biológica , Hongos/enzimología , Hongos/genética , Humanos , Filogenia , Plantas/enzimología , Plantas/genética , Sacaropina Deshidrogenasas/genética , Sacaropina Deshidrogenasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA