Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34493582

RESUMEN

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Ingeniería de Proteínas/métodos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales , Sitios de Unión , COVID-19/virología , Vacunas contra la COVID-19/economía , Humanos , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Unión Proteica , Conformación Proteica , Saccharomycetales/metabolismo , Vacunas de Subunidad
2.
Pharmacol Res ; 189: 106699, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796463

RESUMEN

Vaccination is considered one of the most successful strategies to prevent infectious diseases. In the event of a pandemic or epidemic, the rapid development and distribution of the vaccine to the population is essential to reduce mortality, morbidity and transmission. As seen during the COVID-19 pandemic, the production and distribution of vaccines has been challenging, in particular for resource-constrained settings, essentially slowing down the process of achieving global coverage. Pricing, storage, transportation and delivery requirements of several vaccines developed in high-income countries resulted in limited access for low-and-middle income countries (LMICs). The capacity to manufacture vaccines locally would greatly improve global vaccine access. In particular, for the development of classical subunit vaccines, the access to vaccine adjuvants is a pre-requisite for more equitable access to vaccines. Vaccine adjuvants are agents required to augment or potentiate, and possibly target the specific immune response to such type of vaccine antigens. Openly accessible or locally produced vaccine adjuvants may allow for faster immunization of the global population. For local research and development of adjuvanted vaccines to expand, knowledge on vaccine formulation is of paramount importance. In this review, we aim to discuss the optimal characteristics of a vaccine developed in an emergency setting by focusing on the importance of vaccine formulation, appropriate use of adjuvants and how this may help overcome barriers for vaccine development and production in LMICs, achieve improved vaccine regimens, delivery and storage requirements.


Asunto(s)
COVID-19 , Vacunas , Humanos , Adyuvantes de Vacunas , Pandemias , Vacunación/métodos , Vacunas de Subunidad , Adyuvantes Inmunológicos
3.
Vaccine ; 42(20): 125980, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38769033

RESUMEN

The emergence and ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid vaccine development platforms that can be updated to counteract emerging variants of currently circulating and future emerging coronaviruses. Here we report the development of a "train model" subunit vaccine platform that contains a SARS-CoV-2 Wuhan S1 protein (the "engine") linked to a series of flexible receptor binding domains (RBDs; the "cars") derived from SARS-CoV-2 variants of concern (VOCs). We demonstrate that these linked subunit vaccines when combined with Sepivac SWE™, a squalene in water emulsion (SWE) adjuvant, are immunogenic in Syrian hamsters and subsequently provide protection from infection with SARS-CoV-2 VOCs Omicron (BA.1), Delta, and Beta. Importantly, the bivalent and trivalent vaccine candidates offered protection against some heterologous SARS-CoV-2 VOCs that were not included in the vaccine design, demonstrating the potential for broad protection against a range of different VOCs. Furthermore, these formulated vaccine candidates were stable at 2-8 °C for up to 13 months post-formulation, highlighting their utility in low-resource settings. Indeed, our vaccine platform will enable the development of safe and broadly protective vaccines against emerging betacoronaviruses that pose a significant health risk for humans and agricultural animals.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Mesocricetus , SARS-CoV-2 , Vacunas de Subunidad , Animales , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Vacunas de Subunidad/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Cricetinae , Humanos , Adyuvantes Inmunológicos/administración & dosificación , Femenino , Eficacia de las Vacunas
4.
Front Immunol ; 14: 1188605, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409116

RESUMEN

Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM®, a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.


Asunto(s)
COVID-19 , Vacunas , Animales , Cricetinae , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , COVID-19/prevención & control , Nucleocápside
5.
Angew Chem Int Ed Engl ; 51(36): 9119-22, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22865621

RESUMEN

Do not tumble dry: Gadolinium-DOTA encapsulated into polysaccharide nanoparticles (GdDOTA NPs) exhibited high relaxivity (r(1) =101.7 s(-1) mM(-1) per Gd(3+) ion at 37 °C and 20 MHz). This high relaxation rate is due to efficient Gd loading, reduced tumbling of the Gd complex, and the hydrogel nature of the nanoparticles. The efficacy of the nanoparticles as a T(1)/T(2) dual-mode contrast agent was studied in C6 cells.


Asunto(s)
Medios de Contraste/química , Compuestos Heterocíclicos/química , Hidrogeles/química , Compuestos Organometálicos/química , Animales , Línea Celular Tumoral , Imagen por Resonancia Magnética , Nanopartículas/química , Polisacáridos/química , Ratas
6.
Front Cell Infect Microbiol ; 12: 918629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782116

RESUMEN

The leptospirosis burden on humans, especially in high-risk occupational groups and livestock, leads to public health and economic problems. Leptospirosis subunit vaccines have been under development and require further improvement to provide complete protection. Adjuvants can be used to enhance the amplitude, quality, and durability of immune responses. Previously, we demonstrated that LMQ adjuvant (neutral liposomes containing monophosphoryl lipid A (MPL) and Quillaja saponaria derived QS21 saponin) promoted protective efficacy of LigAc vaccine against Leptospira challenge. To promote immunogenicity and protective efficacy of the subunit vaccines, three alternative adjuvants based on neutral liposomes or squalene-in-water emulsion were evaluated in this study. LQ and LQuil adjuvants combined the neutral liposomes with the QS21 saponin or Quillaja saponaria derived QuilA® saponin, respectively. SQuil adjuvant combined a squalene-in-water emulsion with the QuilA® saponin. The immunogenicity and protective efficacy of LigAc (20 µg) formulated with the candidate adjuvants were conducted in golden Syrian hamsters. Hamsters were vaccinated three times at a 2-week interval, followed by a homologous challenge of L. interrogans serovar Pomona. The results showed that LigAc combined with LQ, LQuil, or SQuil adjuvants conferred substantial antibody responses and protective efficacy (survival rate, pathological change, and Leptospira renal colonization) comparable to LMQ adjuvant. The LigAc+LQ formulation conferred 62.5% survival but was not significantly different from LigAc+LMQ, LigAc+LQuil, and LigAc+SQuil formulations (50% survival). This study highlights the potential of saponin-containing adjuvants LMQ, LQ, LQuil, and SQuil for both human and animal leptospirosis vaccines.


Asunto(s)
Leptospira , Leptospirosis , Saponinas , Adyuvantes Inmunológicos , Animales , Anticuerpos Antibacterianos , Cricetinae , Emulsiones , Leptospirosis/prevención & control , Liposomas , Escualeno , Proteína Estafilocócica A , Vacunas de Subunidad
7.
bioRxiv ; 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33688647

RESUMEN

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs).1 Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access.2 Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs.3 These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples.4-6 Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2.7,8 Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.

8.
Macromol Biosci ; 19(5): e1800446, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30768756

RESUMEN

Curcumin-loaded collagen cryostructurates have been devised for wound healing applications. Curcumin displays strong antioxidant, antiseptic, and anti-inflammatory properties, while collagen is acknowledged for promoting cell adhesion, migration and differentiation. However, when curcumin is loaded directly into collagen hydrogels, it forms large molecular aggregates and clogs the matrix pores. A double-encapsulation strategy is therefore developed by loading curcumin into lipid nanoparticles (LNP), and embedding these particles inside collagen scaffolds. The resulting collagen/LNP cryostructurates have an optimal fibrous structure with ≈100 µm average pore size for sustaining cell migration. Results show that collagen is structurally unaltered and that nanoparticles are homogeneously distributed amidst collagen fibers. Hydrogels soaked in saline buffer release about 20 to 30% of their nanoparticles content within 24 h, while achieved 100% release after 25 days. When exposed to NIH 3T3 fibroblasts, these hydrogels provide a satisfactory scaffold for cell interaction as early as 4 h after seeding, with no cytotoxic counter effect. These positive features make the collagen/lipid cryostructurates a promising material for further use in wound healing.


Asunto(s)
Colágeno , Curcumina , Hidrogeles , Lípidos , Nanopartículas/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Colágeno/química , Colágeno/farmacología , Curcumina/química , Curcumina/farmacología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Lípidos/química , Lípidos/farmacología , Ratones , Células 3T3 NIH
9.
NPJ Vaccines ; 3: 46, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30302284

RESUMEN

HIV is one of the deadliest pandemics of modern times, having already caused 35 million deaths around the world. Despite the huge efforts spent to develop treatments, the virus cannot yet be eradicated and continues to infect new people. Spread of the virus remains uncontrolled, thus exposing the worldwide population to HIV danger, due to the lack of efficient vaccines. The latest clinical trials describe the challenges associated with developing an effective prophylactic HIV vaccine. These immunological obstacles will only be overcome by smart and innovative solutions applied to the design of vaccine formulations. Here, we describe the use of nanostructured lipid carriers (NLC) for the delivery of p24 protein as a model HIV antigen, with the aim of increasing its immunogenicity. We have designed vaccine formulations comprising NLC grafted with p24 antigen, together with cationic NLC optimized for the delivery of immunostimulant CpG. This tailored system significantly enhanced immune responses against p24, in terms of specific antibody production and T-cell activation in mice. More importantly, the capacity of NLC to induce specific immune responses against this troublesome HIV antigen was further supported by a 7-month study on non-human primates (NHP). This work paves the way toward the development of a future HIV vaccine, which will also require the use of envelope antigens.

10.
Biomaterials ; 136: 29-42, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28511142

RESUMEN

New vaccine formulations are still highly anticipated in the near-future to face incoming health challenges, such as emergence or reemergence of severe infectious diseases, immunosenescence associated with elderly or the spread of pathogens resistant to antibiotics. In particular, new nanoparticle-based adjuvants are promising for sub-unit vaccines in order to elicit potent and long lasting immune responses with a better control on their safety. In this context, an innovative delivery system of protein antigens has been designed based on the chemical grafting of the antigen onto the shell of Nanostructured Lipid Carriers (NLC). By using the well-known ovalbumin (OVA) as model of protein antigen, we have compared the immunogenicity properties in mice of different formulations of NLC grafted with OVA, by studying the influence of two main parameters: the size (80 nm versus 120 nm) and the surface charge (anionic versus cationic). We have shown that all mice immunized with OVA delivered through NLC produced much higher antibody titers for all tested formulations as compared to that immunized with OVA or OVA formulated in Complete Freund Adjuvant (CFA, positive control). More interestingly, the 80 nm anionic lipid particles were the most efficient antigen carrier for eliciting higher humoral immune response, as well as cellular immune response characterized by a strong secretion of gamma interferon (IFN-γ). These results associated with the demonstrated non-immunogenicity of the NLC carrier by itself open new avenues for the design of smart sub-unit vaccines containing properly engineered lipid nanoparticles which could stimulate or orient the immune system in a specific way.


Asunto(s)
Antígenos/administración & dosificación , Portadores de Fármacos/química , Lípidos/química , Nanoestructuras/química , Ovalbúmina/administración & dosificación , Animales , Antígenos/inmunología , Femenino , Inmunidad Celular , Inmunidad Humoral , Inmunización , Interferón gamma/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células 3T3 NIH , Ovalbúmina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA