Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lancet Oncol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39134086

RESUMEN

BACKGROUND: Thoracic radiation intensification is debated in patients with stage III non-small-cell lung cancer (NSCLC). We aimed to assess the activity and safety of a boost radiotherapy dose up to 74 Gy in a functional sub-volume given according to on-treatment [18F]fluorodeoxyglucose ([18F]FDG)-PET results. METHODS: In this multicentre, randomised, controlled non-comparative phase 2 trial, we recruited patients aged 18 years or older with inoperable stage III NSCLC without EGFR mutation or ALK rearrangement with an Eastern Cooperative Oncology Group performance status of 0-1, and who were affiliated with or a beneficiary of a social benefit system, with evaluable tumour or node lesions, preserved lung function, and who were amenable to curative-intent radiochemotherapy. Patients were randomly allocated using a central interactive web-response system in a non-masked method (1:1; minimisation method used [random factor of 0·8]; stratified by radiotherapy technique [intensity-modulated radiotherapy vs three-dimensional conformal radiotherapy] and by centre at which patients were treated) either to the experimental adaptive radiotherapy group A, in which only patients with positive residual metabolism on [18F]FDG-PET at 42 Gy received a boost radiotherapy (up to 74 Gy in 33 fractions), with all other patients receiving standard radiotherapy dosing (66 Gy in 33 fractions over 6·5 weeks), or to the standard radiotherapy group B (66 Gy in 33 fractions) over 6·5 weeks. All patients received two cycles of induction platinum-based chemotherapy cycles (paclitaxel 175 mg/m2 intravenously once every 3 weeks and carboplatin area under the curve [AUC]=6 once every 3 weeks, or cisplatin 80 mg/m2 intravenously once every 3 weeks and vinorelbine 30 mg/m2 intravenously on day 1 and 60 mg/m2 orally [or 30 mg/m2 intravenously] on day 8 once every 3 weeks). Then they concomitantly received radiochemotherapy with platinum-based chemotherapy (three cycles for 8 weeks, with once per week paclitaxel 40 mg/m2 intravenously and carboplatin AUC=2 or cisplatin 80 mg/m2 intravenously and vinorelbine 20 mg/m2 intravenously on day 1 and 40 mg/m2 orally (or 20 mg/m2 intravenously) on day 8 in 21-day cycles). The primary endpoint was the 15-month local control rate in the eligible patients who received at least one dose of concomitant radiochemotherapy. This RTEP7-IFCT-1402 trial is registered with ClinicalTrials.gov (NCT02473133), and is ongoing. FINDINGS: From Nov 12, 2015, to July 7, 2021, we randomly assigned 158 patients (47 [30%] women and 111 [70%] men) to either the boosted radiotherapy group A (81 [51%]) or to the standard radiotherapy group B (77 [49%)]. In group A, 80 (99%) patients received induction chemotherapy and 68 (84%) received radiochemotherapy, of whom 48 (71%) with residual uptake on [18F]FDG-PET after 42 Gy received a radiotherapy boost. In group B, all 77 patients received induction chemotherapy and 73 (95%) received radiochemotherapy. At the final analysis, the median follow-up for eligible patients who received radiochemotherapy (n=140) was 45·1 months (95% CI 39·3-48·3). The 15-month local control rate was 77·6% (95% CI 67·6-87·6%) in group A and 71·2% (95% CI 60·8-81·6%) in group B. Acute (within 90 days from radiochemotherapy initiation) grade 3-4 adverse events were observed in 20 (29%) of 68 patients in group A and 33 (45%) of 73 patients in group B, including serious adverse events in five (7%) patients in group A and ten (14%) patients in group B. The most common grade 3-4 adverse events were febrile neutropenia (seven [10%] of 68 in group A vs 16 [22%] of 73 in group B), and anaemia (five [7%] vs nine [12%]). In the acute phase, two deaths (3%) occurred in group B (one due to a septic shock related to chemotherapy, and the other due to haemotypsia not related to study treatment), and no deaths occurred in group A. After 90 days, one additional treatment-unrelated death occurred in group A and two deaths events occurred in group B (one radiation pneumonitis and one pneumonia unrelated to treatment). INTERPRETATION: A thoracic radiotherapy boost, based on interim [18F]FDG-PET, led to a meaningful local control rate with no difference in adverse events between the two groups in organs at risk, in contrast with previous attempts at thoracic radiation intensification, warranting a randomised phase 3 evaluation of such [18F]FDG-PET-guided radiotherapy dose adaptation in patients with stage III NSCLC. FUNDING: Programme Hospitalier de Recherche Clinique National 2014.

3.
EJNMMI Phys ; 11(1): 32, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564043

RESUMEN

BACKGROUND: Peptide receptor radionuclide therapy with 177Lu-DOTATATE is a recognized option for treating neuroendocrine tumors and has few toxicities, except for the kidneys and bone marrow. The bone marrow dose is generally derived from a SPECT/CT image-based method with four timepoints or from a blood-based method with up to 9 timepoints, but there is still no reference method. This retrospective single-center study on the same cohort of patients compared the calculated bone marrow dose administered with both methods using mono, bi- or tri-exponential models. For the image-based method, the dose was estimated using Planetdose© software. Pearson correlation coefficients were calculated. We also studied the impact of late timepoints for both methods. RESULTS: The bone marrow dose was calculated for 131 treatments with the blood-based method and for 17 with the image-based method. In the former, the median absorbed dose was 15.3, 20.5 and 28.3 mGy/GBq with the mono-, bi- and tri-exponential model, respectively. With the image-based method, the median absorbed dose was 63.9, 41.9 and 60.8 with the mono-, bi- and tri-exponential model, respectively. Blood samples after 24h post-injection did not evidence any change in the absorbed bone marrow dose with the bi-exponential model. On the contrary, the 6-day post-injection timepoint was more informative with the image-based model. CONCLUSION: This study confirms that the estimated bone marrow dose is significantly lower with the blood-based method than with the image-based method. The blood-based method with a bi-exponential model proved particularly useful, without the need for blood samples after 24h post-injection. Nevertheless, this blood-based method is based on an assumption that needs to be more validated. The important difference between the two methods does not allow to determine the optimal one to estimate the true absorbed dose and further studies are necessary to compare with biological effects.

4.
Front Endocrinol (Lausanne) ; 15: 1385079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948517

RESUMEN

Background: 177Lu-oxodotreotide peptide receptor therapy (LuPRRT) is an efficient treatment for midgut neuroendocrine tumors (NETs) of variable radiological response. Several clinical, biological, and imaging parameters may be used to establish a relative disease prognosis but none is able to predict early efficacy or toxicities. We investigated expression levels for mRNA and miRNA involved in radiosensitivity and tumor progression searching for correlations related to patient outcome during LuPRRT therapy. Methods: Thirty-five patients received LuPRRT for G1/G2 midgut NETs between May 2019 and September 2021. Peripheral blood samples were collected prior to irradiation, before and 48 h after the second and the fourth LuPRRT, and at 6-month follow-up. Multiple regression analyses and Pearson correlations were performed to identify the miRNA/mRNA signature that will best predict response to LuPRRT. Results: Focusing on four mRNAs and three miRNAs, we identified a miRNA/mRNA signature enabling the early identification of responders to LuPRRT with significant reduced miRNA/mRNA expression after the first LuPRRT administration for patients with progressive disease at 1 year (p < 0.001). The relevance of this signature was reinforced by studying its evolution up to 6 months post-LuPRRT. Moreover, nadir absolute lymphocyte count within the first 2 months after the first LuPRRT administration was significantly related to low miRNA/mRNA expression level (p < 0.05) for patients with progressive disease. Conclusion: We present a pilot study exploring a miRNA/mRNA signature that correlates with early hematologic toxicity and therapeutic response 12 months following LuPRRT. This signature will be tested prospectively in a larger series of patients.


Asunto(s)
Neoplasias Intestinales , MicroARNs , Tumores Neuroendocrinos , ARN Mensajero , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/sangre , Tumores Neuroendocrinos/terapia , Tumores Neuroendocrinos/radioterapia , Tumores Neuroendocrinos/patología , Masculino , Femenino , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Neoplasias Intestinales/sangre , Neoplasias Intestinales/patología , Neoplasias Intestinales/genética , Neoplasias Intestinales/tratamiento farmacológico , ARN Mensajero/genética , ARN Mensajero/sangre , Anciano , Estudios de Seguimiento , Adulto , Pronóstico , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Somatostatina/análogos & derivados , Somatostatina/uso terapéutico , Receptores de Péptidos/genética , Radiofármacos/uso terapéutico , Radiofármacos/administración & dosificación , Lutecio , Radioisótopos
5.
EJNMMI Phys ; 11(1): 9, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252388

RESUMEN

BACKGROUND: Performance assessment of positron emission tomography (PET) scanners is crucial to guide clinical practice with efficiency. We have already introduced and experimentally evaluated a simulation method allowing the creation of a controlled ground truth for system performance assessment. In the current study, the goal was to validate the method using patient data and demonstrate its relevance to assess PET performances accuracy in clinical conditions. METHODS: Twenty-four patients were recruited and sorted into two groups according to their body mass index (BMI). They were administered with a single dose of 2 MBq/kg 18F-FDG and scanned using clinical protocols consecutively on two PET systems: the Discovery-IQ (DIQ) and the Discovery-MI (DMI). For each BMI group, sixty synthetic lesions were dispatched in three subgroups and inserted at relevant anatomical locations. Insertion of synthetic lesions (ISL) was performed at the same location into the two consecutive exams. Two nuclear medicine physicians evaluated individually and blindly the images by qualitatively and semi-quantitatively reporting each detected lesion and agreed on a consensus. We assessed the inter-system detection rates of synthetic lesions and compared it to an initial estimate of at least 1.7 more targets detected on the DMI and the detection rates of natural lesions. We determined the inter-reader variability, evaluated according to the inter-observer agreement (IOA). Adequate inter-reader variability was found for IOA above 80%. Differences in standardized uptake value (SUV) metrics were also studied. RESULTS: In the BMI ≤ 25 group, the relative true positive rate (RTPR) for synthetic and natural lesions was 1.79 and 1.83, respectively. In the BMI > 25 group, the RTPR for synthetic and natural lesions was 2.03 and 2.27, respectively. For each BMI group, the detection rate using ISL was consistent to our estimate and with the detection rate measured on natural lesions. IOA above 80% was verified for any scenario. SUV metrics showed a good agreement between synthetic and natural lesions. CONCLUSIONS: ISL proved relevant to evaluate performance differences between PET scanners. Using these synthetically modified clinical images, we can produce a controlled ground truth in a realistic anatomical model and exploit the potential of PET scanner for clinical purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA