Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(9): 7308-7317, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38351888

RESUMEN

The understanding of molecular interactions that control phase separation in polymer/polymer aqueous two-phase systems (ATPS) has been a subject of debate up to this day. In light of this, we set out to investigate the molecular interactions occurring in ternary mixtures composed of polyethylene glycol (PEG600), polypropylene glycol (PPG400) and water. The ternary phase diagram was plotted at two temperatures (298 K and 323 K), revealing a transition from a type 0 to a type I diagram. Molecular dynamics (MD) simulations were performed to elucidate the polymer-polymer and polymer-water interactions occurring at different temperatures and water concentrations. COnductor-like Screening Model for Realistic Solvents (COSMO-RS) was used to assess the thermodynamic properties of the polymer-water binary mixtures and their correlation with ATPS formation. The MD simulations clearly demonstrate the effect of segregation/separation with increasing water content and temperature, highlighting a significant reduction in PPG-water interactions compared to PEG-water counterparts. Polymer-water interactions were identified as those controlling the phase separation mechanism, and the thermodynamic properties determined with COSMO-RS for the polymer-water binary systems further support this view.

2.
Langmuir ; 39(7): 2692-2709, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36763753

RESUMEN

Aqueous systems comprising polymers and surfactants are technologically important complex fluids with tunable features dependent on the chemical nature of each constituent, overall composition in mixed systems, and solution conditions. The phase behavior and self-assembly of amphiphilic polymers can be changed drastically in the presence of conventional ionic surfactants and need to be clearly understood. Here, the self-aggregation dynamics of a triblock copolymer (Pluronics L81, EO3PO43EO3) in the presence of three cationic surfactants (with a 12C long alkyl chain but with different structural features), viz., dodecyltrimethylammonium bromide (DTAB), didodecyldimethylammonium bromide (DDAB), and ethanediyl-1,2-bis(dimethyldodecylammonium bromide) (12-2-12), were investigated in an aqueous solution environment. The nanoscale micellar size expressed as hydrodynamic diameter (Dh) of copolymer-surfactant mixed aggregates was evaluated using dynamic light scattering, while the presence of a varied micellar geometry of L81-cationic surfactant mixed micelles were probed using small-angle neutron scattering. The obtained findings were further validated from molecular dynamics (MD) simulations, employing a simple and transferable coarse-grained molecular model based on the MARTINI force field. L81 remained molecularly dissolved up to ∼20 °C but phase separated, forming turbid/translucent dispersion, close to its cloud point (CP) and existed as unstable vesicles. However, it exhibited interesting solution behavior expressed in terms of the blue point (BP) and the double CP in the presence of different surfactants, leading to mixed micellar systems with a triggered morphology transition from unstable vesicles to polymer-rich micelles and cationic surfactant-rich micelles. Such an amendment in the morphology of copolymer nanoaggregates in the presence of cationic surfactants has been well observed from scattering data. This is further rationalized employing the MD approach, which validated the effective interactions between Pluronics-cationic surfactant mixed micelles. Thus, our experimental results integrated with MD yield a deep insight into the nanoscale interactions controlling the micellar aggregation (Pluronics-rich micelles and surfactant-rich micelles) in the investigated mixed system.

3.
Phys Chem Chem Phys ; 25(38): 26327-26340, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37750038

RESUMEN

Some ionic liquids (ILs) were shown to display a strong ability to enhance the solubility of phenolic compounds through hydrotropy. However, evidence shows that salt ions in hydrotropic aqueous solutions may change the behavior of molecules by promoting possible interactions between the components of the system, thus causing changes in solubility. Herein, we study the impact of sodium salt anions on the hydrotropic dissolution of syringic acid using 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) as a hydrotrope, with a focus on dicyanamide Na[N(CN)2] and thiocyanate Na[SCN] salts. Dynamic light scattering, Raman spectroscopy, and nuclear magnetic resonance spectroscopy were used to investigate how the mixture of IL-salts affects the solvation. The results obtained show that [C4mim]Cl is able to increase the solubility of syringic acid 80-fold. Despite their structural similarities, the presence of Na[N(CN)2] or Na[SCN] in an aqueous solution of [C4mim]Cl induced opposite solubility trends. The addition of Na[N(CN)2] promotes a higher ability to solubilize syringic acid than in the corresponding IL system due to a pH buffering effect, resulting in the deprotonation of the solute. The addition of Na[SCN], on the other hand, induces a relative decrease in syringic acid solubilization at higher concentrations of ILs due to the negative contribution of the NaCl formed by anion-exchange. These results emphasise the often overlooked pH contribution provided by ILs for biomolecule solubilisation whilst providing experimental insights into the structure of aqueous solutions of ionic liquids and the role it plays in the formation of IL-salt aggregates.

4.
Phys Chem Chem Phys ; 25(16): 11227-11236, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37039782

RESUMEN

The solid-liquid phase behaviour of two tertiary alcohols, perfluoro-tert-butanol and tert-butanol, was studied here using experimental (ITC, DSC and density measurements) and theoretical (MD simulations) approaches. The phase diagram of the binary mixture reveals highly negative deviations from ideality at low concentrations, as well as the formation of co-crystals and is characterized by two eutectic points, a congruent melting point and a peritectic reaction corresponding to TBH : TBF stoichiometries of 2 : 1 and 1 : 1 respectively. Excess molar enthalpies and volumes were calculated, showing negative and positive deviations from ideality, respectively. The effect of acidity, stereochemical hindrance and phobic effects and how they affect intermolecular interactions in these binary mixtures is discussed, with the aim of designing and fine-tuning type V deep eutectic solvents. The results showed that the fluorination of tertiary alcohols can be used for the tuning of the mixing properties and solid-liquid phase diagrams.

5.
Molecules ; 28(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36838595

RESUMEN

Anthocyanins from juçara fruits were extracted by pressurized liquid extraction (PLE) or ultrasound-assisted extraction (UAE), using aqueous solutions of 1,2-alkanediols and glycerol ethers as biobased solvents. The PLE (100 bar, 13 min, 1 mL/min flow rate) in the optimal extraction conditions originated 23.1 mganthocyanins·gdry biomass-1. On the other hand, the UAE was 10 min long, and the optimal conditions using 1,2-propanediol were 42.6 wt%, 160 W, and pH 7.0, leading to 50 mganthocyanins·gdry biomass-1. Extractions at the UAE optimized conditions, with aqueous solutions of five different 1,2-alkanediols and three glycerol ethers were performed, and compared to water and ethanolic extracts. The biobased solvent solutions presented anthocyanin yields up to 33% higher than water, and were shown to be as efficient as ethanol/water, but generated extracts with higher antioxidant capacity. The anthocyanin-rich extract of juçara, obtained with 1,2-propanediol, was used in the production of a natural soap and incorporated into a cream, showing that the addition of the juçara extract resulted in an antioxidant capacity in both products.


Asunto(s)
Euterpe , Frutas , Frutas/química , Antocianinas , Antioxidantes/análisis , Propilenglicol , Solventes , Agua , Etanol , Extractos Vegetales
6.
Phys Chem Chem Phys ; 24(13): 7624-7634, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35294517

RESUMEN

Inspired by the recently proposed cooperative mechanism of hydrotropy, where water molecules mediate the aggregation of hydrotrope around the solute, this work studies the impact of apolar volume and polar group position on the performance of hydrotropes. To do so, the ability of two different families of alkanediols (1,2-alkanediols and 1,n-alkanediols) to increase the aqueous solubility of syringic acid is initially investigated. Interestingly, it is observed that in the dilute region (low hydrotrope concentration), the relative position of the hydroxyl groups of the alkanediols does not impact their performance. Instead, their ability to increase the solubility of syringic acid correlates remarkably well with the size of their alkyl chains. However, this is not the case for larger hydrotrope concentrations, where 1,2-alkanediols are found to perform, in general, better than 1,n-alkanediols. These seemingly contradictory findings are reconciled using theoretical and experimental techniques, namely the cooperative model of hydrotropy and chemical environment probes (Kamlet-Taft and pyrene polarity scales). It is found that the number of hydrotropes aggregated around a solute molecule does not increase linearly with the apolar volume of the former, reaching a maximum instead. This maximum is discussed in terms of competing solute-hydrotrope and hydrotrope-hydrotrope interactions. The results suggest that hydrotrope self-aggregation is more prevalent in 1,n-alkanediols, which negatively impacts their performance as hydrotropes. The results reported in this work support the cooperative model of hydrotropy and, from an application perspective, show that hydrotropes should be designed taking into consideration not only their apolar volume but also their ability to stabilize their self-aggregation in water, which negatively impacts their performance as solubility enhancers.


Asunto(s)
Agua , Solubilidad , Soluciones/química , Agua/química
7.
Phys Chem Chem Phys ; 24(36): 21645-21654, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36065900

RESUMEN

Water solubility enhancement is a long-standing challenge in a multitude of chemistry-related fields. Hydrotropy is a simple and efficient method to improve the solubility of hydrophobic molecules in aqueous media. However, the mechanism behind this phenomenon remains controversial. Herein the impact of salt doping on the hydrotropy phenomenon is determined experimentally using the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) as a hydrotope and vanillin as a solute. Hydrophobic interactions were found to be central to the aggregation of the hydrotrope around the solute, and seem to drive hydrotropy. Furthermore, 1H-NMR analysis indicates that hydrotrope-solute interactions present a degree of site-specificity. The addition of chloride salts in the presence of higher IL concentrations promotes a greater relative decrease of the vanillin solubility than in the corresponding system without the IL. This was assigned to the negative impact of increased hydrotrope pre-aggregation in the presence of inorganic salts. The results were rationalised using statistical thermodynamics through which hydrotrope aggregation prior to solute addition is shown to be detrimental to the hydrotropic effect, seemingly confirming solute-induced clustering of the hydrotrope to be the predominant mechanism of hydrotropy.


Asunto(s)
Líquidos Iónicos , Sales (Química) , Benzaldehídos , Cloruros , Electrólitos , Sales (Química)/química , Cloruro de Sodio , Solubilidad , Soluciones/química , Agua/química
8.
Phys Chem Chem Phys ; 24(24): 14886-14897, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35674089

RESUMEN

The importance of choline chloride (ChCl) is recognized due to its widespread use in the formulation of deep eutectic solvents. The controlled addition of water in deep eutectic solvents has been proposed to overcome some of the major drawbacks of these solvents, namely their high hygroscopicities and viscosities. Recently, aqueous solutions of ChCl at specific mole ratios have been presented as a novel, low viscous deep eutectic solvent. Nevertheless, these proposals are suggested without any information about the solid-liquid phase diagram of this system or the deviations from the thermodynamic ideality of its precursors. This work contributes significantly to this matter as the phase behavior of pure ChCl and (ChCl + H2O) binary mixtures was investigated by calorimetric and analytical techniques. The thermal behavior and stability of ChCl were studied by polarized light optical microscopy and differential scanning calorimetry, confirming the existence of a solid-solid transition at 352.2 ± 0.6 K. Additionally, heat capacity measurements of pure ChCl (covering both ChCl solid phases) and aqueous solutions of ChCl (xChCl < 0.4) were performed using a heat-flow differential scanning microcalorimeter or a high-precision heat capacity drop calorimeter, allowing the estimation of a heat capacity change of (ChCl) ≈ 39.3 ± 10 J K-1 mol-1, between the hypothetical liquid and the observed crystalline phase at 298.15 K. The solid-liquid phase diagram of the ChCl + water mixture was investigated in the whole concentration range by differential scanning calorimetry and the analytical shake-flask method. The phase diagram obtained for the mixture shows an eutectic temperature of 204 K, at a mole fraction of choline chloride close to xChCl = 0.2, and a shift of the solid-solid transition of ChCl-water mixtures of 10 K below the value observed for pure choline chloride, suggesting the appearance of a new crystalline structure of ChCl in the presence of water, as confirmed by X-ray diffraction. The liquid phase presents significant negative deviations to ideality for water while COSMO-RS predicts a near ideal behaviour for ChCl.

9.
J Chem Eng Data ; 67(6): 1565-1572, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-36568723

RESUMEN

The solubilities of glycine, l-leucine, l-phenylalanine, and l-aspartic acid were measured in aqueous MgCl2, Mg(NO3)2, CaCl2,, and Ca(NO3)2 solutions with concentrations ranging from 0 to 2 mol/kg at 298.2 K. The isothermal analytical method was used combined with the refractive index measurements for composition analysis guaranteeing good accuracy. All salts induced a salting-in effect with a higher magnitude for those containing the Ca2+ cation. The nitrate anions also showed stronger binding with the amino acids, thus increasing their relative solubility more than the chloride anions. In particular, calcium nitrate induces an increase in the amino acid solubility from 2.4 (glycine) to 4.6 fold (l-aspartic acid) compared to the corresponding value in water. Amino acid solubility data in aqueous MgCl2 and CaCl2 solutions collected from the open literature were combined with that from this work, allowing us to analyze the relations between the amino acid structure and the salting-in magnitude.

10.
Molecules ; 27(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458744

RESUMEN

Microalgae have an outstanding capacity to efficiently produce value-added compounds. They have been inspiring researchers worldwide to develop a blue biorefinery, supporting the development of the bioeconomy, tackling the environmental crisis, and mitigating the depletion of natural resources. In this review, the characteristics of the carotenoids produced by microalgae are presented and the downstream processes developed to recover and purify them are analyzed, considering their main applications. The ongoing activities and initiatives taking place in Portugal regarding not only research, but also industrialization under the blue biorefinery concept are also discussed. The situation reported here shows that new techniques must be developed to make microalgae production more competitive. Downstream pigment purification technologies must be developed as they may have a considerable impact on the economic viability of the process. Government incentives are needed to encourage a constructive interaction between academics and businesses in order to develop a biorefinery that focuses on high-grade chemicals.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Carotenoides , Portugal
11.
Molecules ; 27(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35889358

RESUMEN

The aim of this work was to develop a simple and easy-to-apply model to predict the pH values of deep eutectic solvents (DESs) over a wide range of pH values that can be used in daily work. For this purpose, the pH values of 38 different DESs were measured (ranging from 0.36 to 9.31) and mathematically interpreted. To develop mathematical models, DESs were first numerically described using σ profiles generated with the COSMOtherm software. After the DESs' description, the following models were used: (i) multiple linear regression (MLR), (ii) piecewise linear regression (PLR), and (iii) artificial neural networks (ANNs) to link the experimental values with the descriptors. Both PLR and ANN were found to be applicable to predict the pH values of DESs with a very high goodness of fit (R2independent validation > 0.8600). Due to the good mathematical correlation of the experimental and predicted values, the σ profile generated with COSMOtherm could be used as a DES molecular descriptor for the prediction of their pH values.


Asunto(s)
Disolventes Eutécticos Profundos , Redes Neurales de la Computación , Concentración de Iones de Hidrógeno , Modelos Teóricos , Solventes/química
12.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364294

RESUMEN

Detergent formulations for cleaning a carbonized soil­degreasers­typically comprise surfactants, organic solvents, phosphate-based cleaning agents, and alkaline agents, which results in high pH values (>11) that raise human and environmental risks. It is important to develop eco-friendly and safer degreasers, while maintaining their cleaning efficiency. In this work, simple degreaser formulations, with a pH below 11 and without phosphates, were developed by using a mixture of solvent, surfactant, and water to remove carbonized soil. The efficiency of the new degreaser formulations (with 5 wt% solvent, 5 wt% nonionic or ionic surfactant, and 90 wt% water) was evaluated by an abrasion test in the removal of carbonized soil from ceramic and stainless steel surfaces and compared with a commercial product. The results obtained show that the formulations comprising isopropylene glycol (IPG) with C11−C13 9EOs and diethylene glycol butyl ether (BDG) with octyltrimethylammonium octanoate ([N1118][C8O2]) present the best cleaning efficiency for both surfaces. The composition of these formulations was optimized for each surface using a mixture design. The resulting formulations, despite having a simpler composition, a pH lower than 11, and being phosphate-free, presented a cleaning efficiency equal or slightly higher than the commercial control. These results show that it is possible to design degreasers that are much less aggressive to the environment and user, while simultaneously fulfilling the market requirements.


Asunto(s)
Detergentes , Suelo , Humanos , Tensoactivos/química , Agua , Solventes
13.
Molecules ; 27(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35565999

RESUMEN

The formation of deep eutectic solvents (DES) is tied to negative deviations to ideality caused by the establishment of stronger interactions in the mixture than in the pure DES precursors. This work tested thymol and menthol as hydrogen bond donors when combined with different flavonoids. Negative deviations from ideality were observed upon mixing thymol with either flavone or flavanone, two parent flavonoids that only have hydrogen bond acceptor (HBA) groups, thus forming non-ionic DES (Type V). On the other hand, the menthol systems with the same compounds generally showed positive deviations from ideality. That was also the case with the mixtures containing the more complex hydroxylated flavonoid, hesperetin, which resulted in positive deviations when mixed with either thymol or menthol. COSMO-RS successfully predicted the behavior of the solid-liquid phase diagram of the studied systems, allowing for evaluation of the impact of the different contributions to the intermolecular interactions, and proving to be a good tool for the design of DES.


Asunto(s)
Disolventes Eutécticos Profundos , Flavonoides , Mentol , Solventes/química , Terpenos , Timol
14.
Biotechnol Bioeng ; 118(7): 2514-2523, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33764496

RESUMEN

Novel liquid supports for enzyme immobilization and reuse based on aqueous biphasic systems (ABS) constituted by cholinium-based ionic liquids (ILs) and polymers for the degradation of dyes are here proposed. The biocatalytic reaction for dye decolorization using laccase occured in the biphasic medium, with the enzyme being "supported" in the IL-rich phase and the dye and degradation products being enriched in the polymer-rich phase. An initial screening of the laccase activity in aqueous solutions of ABS constituents, namely cholinium dihydrogen citrate ([Ch][DHC]), cholinium dihydrogen phosphate ([Ch][DHP]), cholinium acetate ([Ch][Acet]), polypropylene glycol 400 (PPG 400), polyethylene glycol 400 (PEG 400) and K2 HPO4 was carried out. Compared to the buffered control, a relative laccase activity of up to 170%, 257%, and 530% was observed with PEG 400, [Ch][DHP], and [Ch][DHC], respectively. These ABS constituents were then investigated for the in situ enzymatic biodegradation of the Remazol Brilliant Blue R (RBBR) dye. At the optimized conditions, the ABS constituted by PPG 400 at 46 wt% and [Ch][DHC] at 16 wt% leads to the complete degradation of the RBBR dye, further maintaining the enzyme activity. This ABS also allows an easy immobilization, recovery, and reuse of the biocatalyst for six consecutive reaction cycles, achieving a degradation yield of the dye of 96% in the last cycle. In summary, if properly designed, high enzymatic activities and reaction yields are obtained with ABS as liquid supports, while simultaneously overcoming the safety and environmental concerns of conventional organic solvents used in liquid-liquid heterogeneous reactions, thus representing more sustainable biocatalytic processes.


Asunto(s)
Colorantes/química , Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Lacasa/química , Polyporaceae/enzimología
15.
Soft Matter ; 17(20): 5183-5196, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33942825

RESUMEN

Poly(oxyethylene) alkyl ethers, usually denoted by CiEj surfactants, exhibit a rich phase behavior in water, self-assembling to form a variety of 3-D structures with a controllable morphology that find multiple applications across different industrial segments. Hence, being able to describe and understand the effect of molecular structure on the phase behavior of these systems is highly relevant for the efficient design of new materials and their applications. Considering the promising results obtained over the last decade using the MARTINI model to describe ethylene-oxide containing compounds, an extensive assessment of the ability of such a model to describe the phase behavior of CiEj in water was carried out and results are presented here. Given the overall poor temperature transferability of the MARTINI model, mostly due to the lack of an accurate representation of hydrogen bonding, simulations were carried out at a single temperature of 333 K, where most phases are expected to occur according to experiments. Different chain lengths of both the hydrophobic and hydrophilic moieties, spanning a wide range of hydrophilic-lipophilic balance values, were investigated and the phase diagrams of various CiEj surfactants explored over a wide concentration range. The model was able to satisfactorily describe the effect of surfactant structure and concentration on mesophase formation. The stability and dimensions of the obtained phases, and the prediction of some unique features such as the characterization of a singular lamellar phase are presented. The results obtained in this work highlight both the predictive ability and the transferability of the MARTINI forcefield in the description of such systems. Moreover, the model was shown to provide adequate descriptions of the micellar phase in terms of micelle dimensions, critical micelle concentration, and average aggregation number.

16.
Phys Chem Chem Phys ; 23(10): 5824-5833, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33687390

RESUMEN

This study is aimed to enhance the understanding of the interaction between ionic liquids (ILs) and non-ionic Pluronic triblock copolymers in aqueous two-phase micellar systems (ATPMS) used for the selective separation/purification of hydrophobic biomolecules. The ILs allow a precise control of the cloud point phase separation temperature (CPT), particularly important when the stability of the molecule is highly dependent on temperature. The effect of choline-based ILs, with two different counter-anions, chloride and hexanoate, was evaluated using molecular dynamics simulations (MD) for F-68 and L-35 Pluronic aqueous solutions. The simulations revealed the role played by the anions during the Pluronic self-assembly, with choline chloride hindering Pluronic aggregation and the choline hexanoate favouring micelle formation and coalescence, in agreement with the experimental data. A detailed study of the accessible surface area of Pluronic showed a progressive dehydration of the Pluronic hydrophilic micelle corona in choline hexanoate mixtures promoting inter-micelle interactions and, consequently, micelle coalescence. With the addition of choline hexanoate, it was observed that the hydrophilic segments, which form the micelle corona, twisted towards the Pluronic micelle core. The electrostatic interaction is also shown to play a key role in this IL-Pluronic aqueous solution, as the hexanoate anions are accommodated in the Pluronic micelle core, while the choline cations are hosted by the Pluronic micelle corona, with the ions interacting with each other during the self-assembly process. In addition, a comparison study of F-68 and L-35 aqueous solutions shows that the IL impact depends on the length of the Pluronic hydrophilic segment. This work provides a realistic microscopic scenario of the complex interactions between Pluronic copolymers and ILs.

17.
Phys Chem Chem Phys ; 23(7): 4133-4140, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33595039

RESUMEN

Although aqueous biphasic systems have been largely investigated in the separation and/or purification of biocompounds, their potential as reaction media to design integrated reaction-separation processes has been less explored. In this work aqueous biphasic systems (ABSs) composed of polypropylene glycol of molecular weight 400 g mol-1 (PPG 400) and different polyethylene glycols (PEGs) were characterized, and investigated for integrated reaction-separation processes, i.e. in the nucleophilic degradation of diazinon and further separation of reaction products by taking advantage of the lower-critical solution temperature (LCST) behaviour of these ABSs. The nucleophilic degradation of diazinon was carried out in the monophasic regime at 298 K, after which an increase in temperature (up to 313 K) allowed the product separation by two-phase formation (thermoreversible systems). The reaction kinetics and reaction pathways have been determined. The reaction kinetic increases as the PEG molecular weight decreases, with the half-life values obtained being competitive to those previously reported using volatile organic solvents as solvent media and significantly higher than under alkaline hydrolysis. One reaction pathway occurs in ABSs comprising PEGs of higher molecular weights, whereas in the ABS composed of PEG 600 two reaction pathways have been identified, meaning that the reaction pathways can be tailored by changing the PEG nature. ABSs formed by PEGs of lower molecular weights were identified as the most promising option to separate the pesticide degradation products by simply applying changes in temperature.

18.
J Chem Phys ; 155(3): 034501, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34293900

RESUMEN

The differences on the impact of water on the intermolecular interactions present in the deep eutectic solvents betaine/urea and choline/urea are investigated in this work by measuring the solid-liquid phase diagrams of these mixtures with different amounts of added water. These data are analyzed in terms of ternary systems, rather than the usual pseudo-binary approach, and are used to calculate activity coefficients, which provide precious insight into how water affects the interactions of these systems. It is found that the addition of water greatly enhances the intermolecular interactions of betaine/urea near its eutectic composition, hinting at the formation of a 1:1:1 betaine/urea/water aggregate. On the other hand and contrary to what is commonly believed, water has an asymmetric impact on the interactions present in the choline/urea system. The addition of water to choline-rich mixtures leads to weaker interactions, whereas its addition to urea-rich mixtures leads to stronger interactions. This shows that the decrease in the melting temperature of choline/urea mixtures due to the presence of water does not necessarily mean that intermolecular interactions are strengthened. Finally, a minimum in the activity coefficient of urea in the choline/urea system with 2 wt. % of water was found, which coincides with several anomalies in the properties of this system previously reported in the literature.

19.
Molecules ; 26(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34771021

RESUMEN

Cholinium-based ionic liquids ([Ch]-based ILs) were investigated as electrolytes in the formation of aqueous biphasic systems (ABS) composed of polyethylene glycol (PEG) and sodium polyacrylate (NaPA) polymers. Both enhancement and decrease in the liquid-liquid demixing ability induced by electrolytes in PEG-NaPA aqueous biphasic systems were observed. It is shown that the ILs that most extensively partition to the PEG-rich phase tend to act as inorganic salts enhancing the two-phase formation ability, while those that display a more significant partition to the NaPA-rich phase decrease the ABS formation capacity. The gathered results allowed us to confirm the tailoring ability of ILs and to identify, for the first time, opposite effects induced by electrolytes on the PEG-NaPA ABS formation ability. The distribution of the electrolyte ions between the coexisting phases and the polyelectrolyte ion compartmentalization are key factors behind the formation of PEG-NaPA-based ABS.

20.
Molecules ; 27(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011334

RESUMEN

Plastics recycling remains a challenge due to the relatively low quality of the recycled material, since most of the developed recycling processes cannot deal with the additives present in the plastic matrix, so the recycled products end up in lower-grade applications. The application of volatile organic solvents for additives removal is the preferred choice. In this study, pretreatment of plastic packaging waste to remove additives using biosolvents was investigated. The plastic waste used was high-density polyethylene (HDPE) with blue and orange colorants (pigment and/or dye). The first step was to identify the type of colorants present in the HDPE, and we found that both plastics presented only one colorant that was actually a pigment. Then, limonene, a renewable solvent, was used to solubilize HDPE. After HDPE dissolution, a wide range of alcohols (mono-, di-, and tri-alcohols) was evaluated as antisolvents in order to selectively precipitate the polymer and maximize its purity. The use of limonene as solvent for plastic dissolution, in combination with poly-alcohols with an intermediate alkyl chain length and a large number of hydroxyl (OH) groups, was found to work best as an antisolvent (1,2,3-propanetriol and 1,2,4-butanetriol), leading to a removal of up to 94% and 100% of the blue and orange pigments, respectively. Finally, three cycles of extraction were carried out, proving the capability of the solvent and antisolvent to be recovered and reused, ensuring the economic viability and sustainability of the process. This pretreatment provides a secondary source of raw materials and revenue for the recycling process, which may lead to an increase in the quality of recycled polymers, contributing to the development of an economical and sustainable recycling process.


Asunto(s)
Colorantes/química , Plásticos/química , Polietileno/química , Residuos Sólidos , Solventes/química , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA