Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 89(1): 3-14, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27595588

RESUMEN

Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN-DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin-dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK-insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Fosfatidato Fosfatasa/metabolismo , Fosfatidilcolinas/biosíntesis , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Quinasas Ciclina-Dependientes/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación , Fosfatidato Fosfatasa/genética , Fosforilación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente
2.
Plant Cell ; 27(4): 1251-64, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25862304

RESUMEN

Regulation of membrane lipid biosynthesis is critical for cell function. We previously reported that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 (PAH1) and PAH2 stimulates net phosphatidylcholine (PC) biosynthesis and proliferation of the endoplasmic reticulum (ER) in Arabidopsis thaliana. Here, we show that this response is caused specifically by a reduction in the catalytic activity of the protein and positively correlates with an accumulation of its substrate, phosphatidic acid (PA). The accumulation of PC in pah1 pah2 is suppressed by disruption of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE1 (CCT1), which encodes a key enzyme in the nucleotide pathway for PC biosynthesis. The activity of recombinant CCT1 is stimulated by lipid vesicles containing PA. Truncation of CCT1, to remove the predicted C-terminal amphipathic lipid binding domain, produced a constitutively active enzyme. Overexpression of native CCT1 in Arabidopsis has no significant effect on PC biosynthesis or ER morphology, but overexpression of the truncated constitutively active version largely replicates the pah1 pah2 phenotype. Our data establish that membrane homeostasis is regulated by lipid composition in Arabidopsis and reveal a mechanism through which the abundance of PA, mediated by PAH activity, modulates CCT activity to govern PC content.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Citidililtransferasa de Colina-Fosfato/metabolismo , Fosfatidato Fosfatasa/metabolismo , Fosforilcolina/metabolismo , Proteínas de Arabidopsis/genética , Citidililtransferasa de Colina-Fosfato/genética , Fosfatidato Fosfatasa/genética
3.
Plant J ; 64(3): 411-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20969742

RESUMEN

Reticulons are integral endoplasmic reticulum (ER) membrane proteins that have the ability to shape the ER into tubules. It has been hypothesized that their unusually long conserved hydrophobic regions cause reticulons to assume a wedge-like topology that induces membrane curvature. Here we provide proof of this hypothesis. When over-expressed, an Arabidopsis thaliana reticulon (RTNLB13) localized to, and induced constrictions in, cortical ER tubules. Ectopic expression of RTNLB13 was sufficient to induce ER tubulation in an Arabidopsis mutant (pah1 pah2) whose ER membrane is mostly present in a sheet-like form. By sequential shortening of the four transmembrane domains (TMDs) of RTNLB13, we show that the length of the transmembrane regions is directly correlated with the ability of RTNLB13 to induce membrane tubulation and to form low-mobility complexes within the ER membrane. We also show that full-length TMDs are necessary for the ability of RTNLB13 to reside in the ER membrane.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/química , Microtúbulos/metabolismo , Nicotiana/química , Nicotiana/genética
4.
Sci Rep ; 8(1): 17346, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30478395

RESUMEN

Seeds exhibit wide variation in the fatty acid composition of their storage oil. However, the genetic basis of this variation is only partially understood. Here we have used a multi-parent advanced generation inter-cross (MAGIC) population to study the genetic control of fatty acid chain length in Arabidopsis thaliana seed oil. We mapped four quantitative trait loci (QTL) for the quantity of the major very long chain fatty acid species 11-eicosenoic acid (20:1), using multiple QTL modelling. Surprisingly, the main-effect QTL does not coincide with FATTY ACID ELONGASE 1 and a parallel genome wide association study suggested that LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASE 2 (LPCAT2) is a candidate for this QTL. Regression analysis also suggested that LPCAT2 expression and 20:1 content in seeds of the 19 MAGIC founder accessions are related. LPCAT is a key component of the Lands cycle; an acyl editing pathway that enables acyl-exchange between the acyl-Coenzyme A and phosphatidylcholine precursor pools used for microsomal fatty acid elongation and desaturation, respectively. We Mendelianised the main-effect QTL using biparental chromosome segment substitution lines and carried out complementation tests to show that a single cis-acting polymorphism in the LPCAT2 promoter causes the variation in seed 20:1 content, by altering the LPCAT2 expression level and total LPCAT activity in developing siliques. Our work establishes that oilseed species exhibit natural variation in the enzymic capacity for acyl editing and this contributes to the genetic control of storage oil composition.


Asunto(s)
Arabidopsis/genética , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Semillas/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos/química , Ácidos Grasos/genética , Ácidos Grasos Monoinsaturados/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Estudio de Asociación del Genoma Completo , Aceites de Plantas/química , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Semillas/metabolismo
5.
Plant Signal Behav ; 10(10): e1065367, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26225871

RESUMEN

Coordination of membrane lipid biosynthesis is important for cell function during plant growth and development. Here we summarize our recent work on PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) which suggests that this enzyme is a key regulator of phosphaticylcholine (PC) biosynthesis in Arabidopsis thaliana. Disruption of PAH activity elevates phosphatidic acid (PA) levels and stimulates PC biosynthesis and biogenesis of the endoplasmic reticulum (ER). Furthermore, the activity of PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE (CCT), which is the key enzyme controlling the rate of PC biosynthesis, is directly stimulated by PA and expression of a constitutively active version of CCT replicates the effects of PAH disruption. Hence PAH activity can control the abundance of PA, which in turn can modulate CCT activity to govern the rate of PC biosynthesis. Crucially it is not yet clear how PAH activity is regulated in Arabidopsis but there is evidence that PAH1 and PAH2 are both phosphorylated and further work will be required to investigate whether this is functionally significant.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citidililtransferasa de Colina-Fosfato/metabolismo , Retículo Endoplásmico/metabolismo , Fosfatidato Fosfatasa/metabolismo , Fosfatidilcolinas/metabolismo , Hidrolasas/metabolismo , Lípidos de la Membrana/biosíntesis , Ácidos Fosfatidicos/metabolismo , Fosforilación
6.
Nat Commun ; 6: 6659, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25858700

RESUMEN

Gluconeogenesis is a fundamental metabolic process that allows organisms to make sugars from non-carbohydrate stores such as lipids and protein. In eukaryotes only one gluconeogenic route has been described from organic acid intermediates and this relies on the enzyme phosphoenolpyruvate carboxykinase (PCK). Here we show that two routes exist in Arabidopsis, and that the second uses pyruvate, orthophosphate dikinase (PPDK). Gluconeogenesis is critical to fuel the transition from seed to seedling. Arabidopsis pck1 and ppdk mutants are compromised in seed-storage reserve mobilization and seedling establishment. Radiolabelling studies show that PCK predominantly allows sugars to be made from dicarboxylic acids, which are products of lipid breakdown. However, PPDK also allows sugars to be made from pyruvate, which is a major product of protein breakdown. We propose that both routes have been evolutionarily conserved in plants because, while PCK expends less energy, PPDK is twice as efficient at recovering carbon from pyruvate.


Asunto(s)
Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Gluconeogénesis/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Piruvato Ortofosfato Diquinasa/metabolismo , Plantones/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Carbohidratos/biosíntesis , Carbono/metabolismo , Ácidos Dicarboxílicos/metabolismo , Metabolismo de los Lípidos/genética , Mutación , Fosfoenolpiruvato Carboxilasa/genética , Piruvato Ortofosfato Diquinasa/genética , Ácido Pirúvico/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Transducción de Señal
7.
Traffic ; 9(3): 408-16, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18194392

RESUMEN

The plant vacuolar sorting receptor (VSR) binds proteins carrying vacuolar sorting signals (VSS) of the 'sequence-specific' type (ssVSS) but not the C-terminal, hydrophobic sorting signals (ctVSS). Seeds of Arabidopsis mutants lacking the major VSR isoform, AtVSR1, secrete a proportion of the proteins destined to storage vacuoles. The sorting signals for these proteins are not well defined, but they do not seem to be of the ssVSS type. Here, we tested whether absence of VSR1 in seeds leads to secretion of reporter proteins carrying ssVSS but not ctVSS. Our results show that reporters carrying either ssVSS or ctVSS are equally secreted in the absence of VSR1. We discuss our findings in relation to the current model for vacuolar sorting.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , ADN de Plantas/genética , Genes de Plantas , Genes Reporteros , Modelos Biológicos , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/metabolismo , Solubilidad , Vacuolas/metabolismo
8.
Traffic ; 9(1): 94-102, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17980018

RESUMEN

We have cloned a member of the reticulon (RTN) family of Arabidopsis thaliana (RTNLB13). When fused to yellow fluorescent protein (YFP) and expressed in tobacco leaf epidermal cells, RTNLB13 is localized in the endoplasmic reticulum (ER). Coexpression of a soluble ER luminal marker reveals that YFP-tagged, myc-tagged or untagged RTNLB13 induces severe morphological changes to the lumen of the ER. We show, using fluorescence recovery after photobleaching (FRAP) analysis, that RTNLB13 overexpression greatly reduces diffusion of soluble proteins within the ER lumen, possibly by introducing constrictions into the membrane. In spite of this severe phenotype, Golgi shape, number and dynamics appear unperturbed and secretion of a reporter protein remains unaffected.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Arabidopsis/ultraestructura , Retículo Endoplásmico/ultraestructura , Recuperación de Fluorescencia tras Fotoblanqueo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Microscopía Confocal , Filogenia , Transporte de Proteínas , Proteínas Recombinantes/metabolismo
9.
Plant Physiol ; 145(4): 1371-82, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17905861

RESUMEN

We generated fusions between three Arabidopsis (Arabidopsis thaliana) tonoplast intrinsic proteins (TIPs; alpha-, gamma-, and delta-TIP) and yellow fluorescent protein (YFP). We also produced soluble reporters consisting of the monomeric red fluorescent protein (RFP) and either the C-terminal vacuolar sorting signal of phaseolin or the sequence-specific sorting signal of proricin. In transgenic Arabidopsis leaves, mature roots, and root tips, all TIP fusions localized to the tonoplast of the central vacuole and both of the lumenal RFP reporters were found within TIP-delimited vacuoles. In embryos from developing, mature, and germinating seeds, all three TIPs localized to the tonoplast of protein storage vacuoles. To determine the temporal TIP expression patterns and to rule out mistargeting due to overexpression, we generated plants expressing YFP fused to the complete genomic sequences of the three TIP isoforms. In transgenic Arabidopsis, gamma-TIP expression was limited to vegetative tissues, but specifically excluded from root tips, whereas alpha-TIP was exclusively expressed during seed maturation. delta-TIP was expressed in vegetative tissues, but not root tips, at a later stage than gamma-TIP. Our findings indicate that, in the Arabidopsis tissues analyzed, two different vacuolar sorting signals target soluble proteins to a single vacuolar location. Moreover, TIP isoform distribution is tissue and development specific, rather than organelle specific.


Asunto(s)
Arabidopsis/ultraestructura , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Vacuolas/ultraestructura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Biomarcadores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Ingeniería de Proteínas , Isoformas de Proteínas/metabolismo , Semillas/metabolismo , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA