Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 71(5): 1167-1181, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34623465

RESUMEN

The rapid development of immune checkpoint blockade (ICB) therapies has revolutionized the cancer treatment landscape and brightened the long-term forecast for many cancer patients. However, the specific genomic and proteomic changes in tumors treated with different ICB treatments have yet to be fully characterized. We treated four non-small-cell lung carcinoma (NSCLC) tumor digests ex vivo with the anti-PD-L1 antibody durvalumab (D) alone or in combination with the anti-CTLA-4 antibody tremelimumab (T) to explore changes in gene and protein expression associated with these ICB therapies. All four tumors showed a robust increase in interferon gamma (IFN-γ) production (100-300% higher than isotype control) in both D- and D + T-treated tumors. Three of the four tumors showed additional increases in IFN-γ production with D + T compared with D (40-70%). A substantial reduction in interleukin 10 (IL-10) was also found in three of the four tumors (reduced to 4-8%) in response to D and D + T. Conventional CD4 + /CD8 + populations and T cell activation markers increased after D and D + T treatment. D and D + T upregulated multiple IPA pathways involving T cell activation. D + T resulted in additional upregulation of Th1/Th2 pathways through a different set of genes, as well as greater reduction in genes involved in epithelial-mesenchymal transition (EMT), angiogenesis, and cancer stemness. Our results demonstrated that D + T augmented the effects of D in the microenvironment of this set of NSCLC tumors. The specific impact of D + T on the regulation of EMT, angiogenesis, and cancer stemness warrants further evaluation in a larger set of tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Proteómica , Microambiente Tumoral
2.
J Transl Med ; 17(1): 357, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31684954

RESUMEN

BACKGROUND: The 18-gene tumor inflammation signature (TIS) is a clinical research assay that enriches for clinical benefit to immune checkpoint blockade. We evaluated its ability to predict clinical benefit of immunotherapy in cancer patients treated with PD-1 checkpoint inhibitors in routine clinical care. METHODS: The CERTIM cohort is a prospective cohort which includes patients receiving immune checkpoint inhibitors in Cochin University hospital. RNA extracted from 58 archival formalin fixed paraffin embedded tumor blocks (including 38 lung cancers, 5 melanomas, 10 renal carcinomas, 4 urothelial carcinomas and 1 colon carcinoma) was hybridized to a beta version of the NanoString® PanCancer IO360™ CodeSet using nCounter® technology. Gene expression signatures were correlated with tumor responses (by RECIST criteria) and overall survival. PD-L1 immunostaining on tumor cells was assessed in 37 non-small cell lung cancer (NSCLC) samples and tumor mutational burden (TMB) measured by whole exome sequencing in 19 of these. RESULTS: TIS scores were significantly associated with complete or partial response to anti-PD-1 treatment in the whole cohort (odds ratio = 2.64, 95% CI [1.4; 6.0], p = 0.008), as well as in the NSCLC population (odds ratio = 3.27, 95% CI [1.2; 11.6], p = 0.03). Patients whose tumor had a high TIS score (upper tertile) showed prolonged overall survival compared to patients whose tumor had lower TIS scores, both in the whole cohort (hazard ratio = 0.37, 95% CI [0.18, 0.76], p = 0.005) and in the NSCLC population (hazard ratio = 0.36, 95% CI [0.14, 0.90], p = 0.02). In the latter, the TIS score was independent from either PD-L1 staining on tumor cells (spearman coefficient 0.2) and TMB (spearman coefficient - 0.2). CONCLUSIONS: These results indicate that validated gene expression assay measuring the level of tumor microenvironment inflammation such as TIS, are accurate and independent predictive biomarkers and can be easily implemented in the clinical practice.


Asunto(s)
Inflamación/genética , Inflamación/terapia , Neoplasias/genética , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Estudios de Cohortes , Femenino , Humanos , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Masculino , Persona de Mediana Edad , Mutación , Estudios Prospectivos , Transcriptoma , Investigación Biomédica Traslacional , Resultado del Tratamiento
3.
Am J Respir Crit Care Med ; 198(7): 928-940, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29518341

RESUMEN

RATIONALE: Patients with chronic obstructive pulmonary disease (COPD) have a higher prevalence of lung cancer. The chronic inflammation associated with COPD probably promotes the earliest stages of carcinogenesis. However, once tumors have progressed to malignancy, the impact of COPD on the tumor immune microenvironment remains poorly defined, and its effects on immune-checkpoint blockers' efficacy are still unknown. OBJECTIVES: To study the impact of COPD on the immune contexture of non-small cell lung cancer. METHODS: We performed in-depth immune profiling of lung tumors by immunohistochemistry and we determined its impact on patient survival (n = 435). Tumor-infiltrating T lymphocyte (TIL) exhaustion by flow cytometry (n = 50) was also investigated. The effectiveness of an anti-PD-1 (programmed cell death-1) treatment (nivolumab) was evaluated in 39 patients with advanced-stage non-small cell lung cancer. All data were analyzed according to patient COPD status. MEASUREMENTS AND MAIN RESULTS: Remarkably, COPD severity is positively correlated with the coexpression of PD-1/TIM-3 (T-cell immunoglobulin and mucin domain-containing molecule-3) by CD8 T cells. In agreement, we observed a loss of CD8 T cell-associated favorable clinical outcome in COPD+ patients. Interestingly, a negative prognostic value of PD-L1 (programmed cell death ligand 1) expression by tumor cells was observed only in highly CD8 T cell-infiltrated tumors of COPD+ patients. Finally, data obtained on 39 patients with advanced-stage non-small cell lung cancer treated by an anti-PD-1 antibody showed longer progression-free survival in COPD+ patients, and also that the association between the severity of smoking and the response to nivolumab was preferentially observed in COPD+ patients. CONCLUSIONS: COPD is associated with an increased sensitivity of CD8 tumor-infiltrating T lymphocytes to immune escape mechanisms developed by tumors, thus suggesting a higher sensitivity to PD-1 blockade in patients with COPD.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Microambiente Tumoral/inmunología , Anciano , Análisis de Varianza , Biopsia con Aguja , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Enfermedad Pulmonar Obstructiva Crónica/patología , Estudios Retrospectivos , Medición de Riesgo , Análisis de Supervivencia
4.
Nucleic Acids Res ; 44(4): e38, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26578606

RESUMEN

Tumors are characterized by properties of genetic instability, heterogeneity, and significant oligoclonality. Elucidating this intratumoral heterogeneity is challenging but important. In this study, we propose a framework, BubbleTree, to characterize the tumor clonality using next generation sequencing (NGS) data. BubbleTree simultaneously elucidates the complexity of a tumor biopsy, estimating cancerous cell purity, tumor ploidy, allele-specific copy number, and clonality and represents this in an intuitive graph. We further developed a three-step heuristic method to automate the interpretation of the BubbleTree graph, using a divide-and-conquer strategy. In this study, we demonstrated the performance of BubbleTree with comparisons to similar commonly used tools such as THetA2, ABSOLUTE, AbsCN-seq and ASCAT, using both simulated and patient-derived data. BubbleTree outperformed these tools, particularly in identifying tumor subclonal populations and polyploidy. We further demonstrated BubbleTree's utility in tracking clonality changes from patients' primary to metastatic tumor and dating somatic single nucleotide and copy number variants along the tumor clonal evolution. Overall, the BubbleTree graph and corresponding model is a powerful approach to provide a comprehensive spectrum of the heterogeneous tumor karyotype in human tumors. BubbleTree is R-based and freely available to the research community (https://www.bioconductor.org/packages/release/bioc/html/BubbleTree.html).


Asunto(s)
Aneuploidia , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Programas Informáticos , Algoritmos , Variaciones en el Número de Copia de ADN , Humanos , Análisis de Secuencia de ADN/métodos
5.
BMC Genomics ; 16: 519, 2015 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-26162375

RESUMEN

BACKGROUND: Drosophila melanogaster activates a variety of immune responses against microbial infections. However, information on the Drosophila immune response to entomopathogenic nematode infections is currently limited. The nematode Heterorhabditis bacteriophora is an insect parasite that forms a mutualistic relationship with the gram-negative bacteria Photorhabdus luminescens. Following infection, the nematodes release the bacteria that quickly multiply within the insect and produce several toxins that eventually kill the host. Although we currently know that the insect immune system interacts with Photorhabdus, information on interaction with the nematode vector is scarce. RESULTS: Here we have used next generation RNA-sequencing to analyze the transcriptional profile of wild-type adult flies infected by axenic Heterorhabditis nematodes (lacking Photorhabdus bacteria), symbiotic Heterorhabditis nematodes (carrying Photorhabdus bacteria), and Photorhabdus bacteria alone. We have obtained approximately 54 million reads from the different infection treatments. Bioinformatic analysis shows that infection with Photorhabdus alters the transcription of a large number of Drosophila genes involved in translational repression as well in response to stress. However, Heterorhabditis infection alters the transcription of several genes that participate in lipidhomeostasis and metabolism, stress responses, DNA/protein synthesis and neuronal functions. We have also identified genes in the fly with potential roles in nematode recognition, anti-nematode activity and nociception. CONCLUSIONS: These findings provide fundamental information on the molecular events that take place in Drosophila upon infection with the two pathogens, either separately or together. Such large-scale transcriptomic analyses set the stage for future functional studies aimed at identifying the exact role of key factors in the Drosophila immune response against nematode-bacteria complexes.


Asunto(s)
Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Infecciones por Nematodos/genética , Infecciones por Nematodos/inmunología , Photorhabdus/inmunología , Animales , Antibacterianos/inmunología , Biología Computacional , ARN/genética , Análisis de Secuencia de ARN/métodos , Transcripción Genética/genética
6.
BMC Genomics ; 15: 988, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25407537

RESUMEN

BACKGROUND: Chromatin compactness has been considered a major determinant of gene activity and has been associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time, genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted from chromatin modification and gene expression data. However the universal applicability of such predictions is not self-evident, and requires experimental verification. RESULTS: We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed chromatin were identified by computational analysis of the data, and correlated to other genome annotations including predicted chromatin "states", individual chromatin modifications, nuclear lamina interactions, and gene expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of cases, we detected diverse "exceptions" from the conventional rules. We found a profound paucity of chromatin modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes including their promoters are located in closed chromatin. CONCLUSIONS: These findings reveal limitations of the existing predictive models, indicate novel mechanisms of epigenetic regulation, and provide important insights into genome organization and function.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Mapeo Cromosómico , Drosophila/genética , Genoma de los Insectos , Animales , Sitios de Unión , Cromatina/metabolismo , Biología Computacional/métodos , Desoxirribonucleasa I/metabolismo , Unión Proteica
7.
BMC Genomics ; 15: 738, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25168586

RESUMEN

BACKGROUND: Halyomorpha halys (Stål) (Insecta:Hemiptera;Pentatomidae), commonly known as the Brown Marmorated Stink Bug (BMSB), is an invasive pest of the mid-Atlantic region of the United States, causing economically important damage to a wide range of crops. Native to Asia, BMSB was first observed in Allentown, PA, USA, in 1996, and this pest is now well-established throughout the US mid-Atlantic region and beyond. In addition to the serious threat BMSB poses to agriculture, BMSB has become a nuisance to homeowners, invading home gardens and congregating in large numbers in human-made structures, including homes, to overwinter. Despite its significance as an agricultural pest with limited control options, only 100 bp of BMSB sequence data was available in public databases when this project began. RESULTS: Transcriptome sequencing was undertaken to provide a molecular resource to the research community to inform the development of pest control strategies and to provide molecular data for population genetics studies of BMSB. Using normalized, strand-specific libraries, we sequenced pools of all BMSB life stages on the Illumina HiSeq. Trinity was used to assemble 200,000 putative transcripts in >100,000 components. A novel bioinformatic method that analyzed the strand-specificity of the data reduced this to 53,071 putative transcripts from 18,573 components. By integrating multiple other data types, we narrowed this further to 13,211 representative transcripts. CONCLUSIONS: Bacterial endosymbiont genes were identified in this dataset, some of which have a copy number consistent with being lateral gene transfers between endosymbiont genomes and Hemiptera, including ankyrin-repeat related proteins, lysozyme, and mannanase. Such genes and endosymbionts may provide novel targets for BMSB-specific biocontrol. This study demonstrates the utility of strand-specific sequencing in generating shotgun transcriptomes and that rapid sequencing shotgun transcriptomes is possible without the need for extensive inbreeding to generate homozygous lines. Such sequencing can provide a rapid response to pest invasions similar to that already described for disease epidemiology.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Heterópteros/genética , Proteínas de Insectos/genética , Análisis de Secuencia de ARN/métodos , Animales , Bacterias/genética , Proteínas Bacterianas/genética , Biología Computacional/métodos , Femenino , Transferencia de Gen Horizontal , Heterópteros/microbiología , Especies Introducidas , Masculino , Datos de Secuencia Molecular , Filogenia , Simbiosis
8.
Genome Res ; 21(6): 830-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21460062

RESUMEN

Human genetic variation is expected to play a central role in personalized medicine. Yet only a fraction of the natural genetic variation that is harbored by humans has been discovered to date. Here we report almost 2 million small insertions and deletions (INDELs) that range from 1 bp to 10,000 bp in length in the genomes of 79 diverse humans. These variants include 819,363 small INDELs that map to human genes. Small INDELs frequently were found in the coding exons of these genes, and several lines of evidence indicate that such variation is a major determinant of human biological diversity. Microarray-based genotyping experiments revealed several interesting observations regarding the population genetics of small INDEL variation. For example, we found that many of our INDELs had high levels of linkage disequilibrium (LD) with both HapMap SNPs and with high-scoring SNPs from genome-wide association studies. Overall, our study indicates that small INDEL variation is likely to be a key factor underlying inherited traits and diseases in humans.


Asunto(s)
Variación Genética , Genoma Humano/genética , Mutación INDEL/genética , Genómica/métodos , Genotipo , Humanos , Análisis por Micromatrices , Medicina de Precisión/métodos
9.
BMC Genomics ; 14: 383, 2013 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-23758733

RESUMEN

BACKGROUND: Streptococcus pneumoniae is a leading cause of childhood morbidity and mortality worldwide, despite the availability of effective pneumococcal vaccines. Understanding the molecular interactions between the bacterium and the host will contribute to the control and prevention of pneumococcal disease. RESULTS: We used a combination of adherence assays, mutagenesis and functional genomics to identify novel factors involved in adherence. By contrasting these processes in two pneumococcal strains, TIGR4 and G54, we showed that adherence and invasion capacities vary markedly by strain. Electron microscopy showed more adherent bacteria in association with membranous pseudopodia in the TIGR4 strain. Operons for cell wall phosphorylcholine incorporation (lic), manganese transport (psa) and phosphate utilization (phn) were up-regulated in both strains on exposure to epithelial cells. Pneumolysin, pili, stress protection genes (adhC-czcD) and genes of the type II fatty acid synthesis pathway were highly expressed in the naturally more invasive strain, TIGR4. Deletion mutagenesis of five gene regions identified as regulated in this study revealed attenuation in adherence. Most strikingly, ∆SP_1922 which was predicted to contain a B-cell epitope and revealed significant attenuation in adherence, appeared to be expressed as a part of an operon that includes the gene encoding the cytoplasmic pore-forming toxin and vaccine candidate, pneumolysin. CONCLUSION: This work identifies a list of novel potential pneumococcal adherence determinants.


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Faringe/citología , Fenotipo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiología , Transcripción Genética/genética , Adhesión Bacteriana/genética , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Genes Bacterianos/genética , Humanos , Mutagénesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Faringe/microbiología , Eliminación de Secuencia , Especificidad de la Especie
10.
Health Care Manag (Frederick) ; 32(1): 58-68, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23364419

RESUMEN

Many health care mergers and acquisitions have proven highly successful because of the geographic proximity of the institutions, coalignment strategies, complementary services, and improved financial performance. Other health care mergers and acquisitions, however, have been dismal failures. This article seeks to explain a primary cause of less successful mergers or acquisitions through the prism of a multiscale, iterative prisoner's dilemma that occurs between department managers. Aspects of "Coping Theory," "Resource (Conservation) Theory," and "Social Comparison Theory" are used to analyze the experience of employees charged with making mergers or acquisitions successful. Lastly, this article suggests possible culture clash remedies drawn from the realistic conflict experiment conducted by Muzafer Sherif near Robbers Cave State Park in Oklahoma.


Asunto(s)
Conflicto Psicológico , Teoría del Juego , Instituciones Asociadas de Salud/normas , Modelos Teóricos , Adaptación Psicológica , Humanos , Cultura Organizacional , Apoyo Social , Estrés Psicológico , Estados Unidos
11.
Health Care Manag (Frederick) ; 31(2): 112-20, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22534967

RESUMEN

Employers are facing difficult times with respect to controlling costs associated with health care benefits provided to employees. Current trends in employer health care costs are unsustainable. Moreover, public policy changes in the form of the Patient Protection and Affordable Care Act are tied up in legal review, and the results are uncertain. This article provides a brief background on health care benefits and costs, discusses consumer-driven and traditional models of health care plans, and reviews cost-control tactics that employers should consider. It concludes with a review of the current situation with recommendations to employers for moderating future health care costs.


Asunto(s)
Planes de Asistencia Médica para Empleados/economía , Control de Costos/métodos , Guías como Asunto , Gastos en Salud , Humanos , Patient Protection and Affordable Care Act , Estados Unidos
12.
Nat Commun ; 13(1): 5632, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163168

RESUMEN

Activating mutations in KRAS occur in 32% of lung adenocarcinomas (LUAD). Despite leading to aggressive disease and resistance to therapy in preclinical studies, the KRAS mutation does not predict patient outcome or response to treatment, presumably due to additional events modulating RAS pathways. To obtain a broader measure of RAS pathway activation, we developed RAS84, a transcriptional signature optimised to capture RAS oncogenic activity in LUAD. We report evidence of RAS pathway oncogenic activation in 84% of LUAD, including 65% KRAS wild-type tumours, falling into four groups characterised by coincident alteration of STK11/LKB1, TP53 or CDKN2A, suggesting that the classifications developed when considering only KRAS mutant tumours have significance in a broader cohort of patients. Critically, high RAS activity patient groups show adverse clinical outcome and reduced response to chemotherapy. Patient stratification using oncogenic RAS transcriptional activity instead of genetic alterations could ultimately assist in clinical decision-making.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Genes ras/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras
13.
Clin Cancer Res ; 28(12): 2567-2578, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35395080

RESUMEN

PURPOSE: PD-L1 is upregulated in glioblastoma and supports immunosuppression. We evaluated PD-L1 blockade with durvalumab among glioblastoma cohorts and investigated potential biomarkers. PATIENTS AND METHODS: MGMT unmethylated newly diagnosed patients received radiotherapy plus durvalumab (cohort A; n = 40). Bevacizumab-naïve, recurrent patients received durvalumab alone (cohort B; n = 31) or in combination with standard bevacizumab (cohort B2; n = 33) or low-dose bevacizumab (cohort B3; n = 33). Bevacizumab-refractory patients received durvalumab plus bevacizumab (cohort C; n = 22). Primary endpoints were: OS-12 (A), PFS-6 (B, B2, B3), and OS-6 (C). Exploratory biomarkers included: a systematic, quantitative, and phenotypic evaluation of circulating immune cells; tumor mutational burden (TMB); and tumor immune activation signature (IAS). RESULTS: No cohort achieved the primary efficacy endpoint. Outcome was comparable among recurrent, bevacizumab-naïve cohorts. No unexpected toxicities were observed. A widespread reduction of effector immune cell subsets was noted among recurrent patients compared with newly diagnosed patients that was partially due to dexamethasone use. A trend of increased CD8+Ki67+ T cells at day 15 was noted among patients who achieved the primary endpoint and were not on dexamethasone. Neither TMB nor IAS predicted outcome. CONCLUSIONS: Patients with recurrent glioblastoma have markedly lower baseline levels of multiple circulating immune cell subsets compared with newly diagnosed patients. An early increase in systemic Ki67+CD8+ cells may warrant further evaluation as a potential biomarker of therapeutic benefit among patients with glioblastoma undergoing checkpoint therapy. Dexamethasone decreased immune cell subsets. PD-L1 blockade and combination with standard or reduced dose bevacizumab was ineffective.


Asunto(s)
Dexametasona , Glioblastoma , Recurrencia Local de Neoplasia , Anticuerpos Monoclonales , Antígeno B7-H1/antagonistas & inhibidores , Bevacizumab/uso terapéutico , Biomarcadores de Tumor/análisis , Dexametasona/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Antígeno Ki-67 , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología
14.
Mol Cancer Res ; 19(3): 498-506, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33257508

RESUMEN

Mutations that drive oncogenesis in cancer can generate neoantigens that may be recognized by the immune system. Identification of these neoantigens remains challenging due to the complexity of the MHC antigen and T-cell receptor interaction. Here, we describe the development of a systematic approach to efficiently identify and validate immunogenic neoantigens. Whole-exome sequencing of tissue from a patient with melanoma was used to identify nonsynonymous mutations, followed by MHC binding prediction and identification of tumor clonal architecture. The top 18 putative class I neoantigens were selected for immunogenicity testing via a novel in vitro pipeline in HLA-A201 healthy donor blood. Naïve CD8 T cells from donors were stimulated with allogeneic dendritic cells pulsed with peptide pools and then with individual peptides. The presence of antigen-specific T cells was determined via functional assays. We identified one putative neoantigen that expanded T cells specific to the mutant form of the peptide and validated this pipeline in a subset of patients with bladder tumors treated with durvalumab (n = 5). Within this cohort, the top predicted neoantigens from all patients were immunogenic in vitro. Finally, we looked at overall survival in the whole durvalumab-treated bladder cohort (N = 37) by stratifying patients by tertile measure of tumor mutation burden (TMB) or neoantigen load. Patients with higher neoantigen and TMB load tended to show better overall survival. IMPLICATIONS: This pipeline can enable accurate and rapid identification of personalized neoantigens that may help to identify patients who will survive longer on durvalumab.


Asunto(s)
Antígenos de Neoplasias/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología
15.
Appl Environ Microbiol ; 75(7): 2046-56, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19201974

RESUMEN

The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N(2) fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Genoma Bacteriano , Microbiología del Suelo , Antibacterianos/biosíntesis , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Cianobacterias/genética , ADN Bacteriano/química , Hongos/genética , Macrólidos/metabolismo , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Filogenia , Proteobacteria/genética , Análisis de Secuencia de ADN , Homología de Secuencia
16.
PLoS One ; 8(12): e80597, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324615

RESUMEN

We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness). Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.


Asunto(s)
Chlamydia trachomatis/genética , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Metagenoma , Transcriptoma , Línea Celular Tumoral , Chlamydia trachomatis/metabolismo , Colágeno/genética , Colágeno/metabolismo , Células Epiteliales/microbiología , Retroalimentación Fisiológica , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Análisis de Secuencia de ARN , Tenascina/genética , Tenascina/metabolismo
17.
Nat Commun ; 4: 2091, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23820484

RESUMEN

DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.


Asunto(s)
Metilación de ADN/genética , Diatomeas/genética , Genoma/genética , Cromosomas/genética , Elementos Transponibles de ADN/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Sitios Genéticos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
18.
BMC Res Notes ; 5: 230, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22583543

RESUMEN

BACKGROUND: Numerous methods exist for enriching bacterial or mammalian mRNA prior to transcriptome experiments. Yet there persists a need for methods to enrich for mRNA in non-mammalian animal systems. For example, insects contain many important and interesting obligate intracellular bacteria, including endosymbionts and vector-borne pathogens. Such obligate intracellular bacteria are difficult to study by traditional methods. Therefore, genomics has greatly increased our understanding of these bacteria. Efficient subtraction methods are needed for removing both bacteria and insect rRNA in these systems to enable transcriptome-based studies. FINDINGS: A method is described that efficiently removes >95% of insect rRNA from total RNA samples, as determined by microfluidics and transcriptome sequencing. This subtraction yielded a 6.2-fold increase in mRNA abundance. Such a host rRNA-depletion strategy, in combination with bacterial rRNA depletion, is necessary to analyze transcription of obligate intracellular bacteria. Here, transcripts were identified that arise from a lateral gene transfer of an entire Wolbachia bacterial genome into a Drosophila ananassae chromosome. In this case, an rRNA depletion strategy is preferred over polyA-based enrichment since transcripts arising from bacteria-to-animal lateral gene transfer may not be poly-adenylated. CONCLUSIONS: This enrichment method yields a significant increase in mRNA abundance when poly-A selection is not suitable. It can be used in combination with bacterial rRNA subtraction to enable experiments to simultaneously measure bacteria and insect mRNA in vector and endosymbiont biology experiments.


Asunto(s)
Drosophila/genética , Drosophila/microbiología , Perfilación de la Expresión Génica/métodos , Transferencia de Gen Horizontal/genética , ARN Ribosómico 18S/aislamiento & purificación , Wolbachia/genética , Actinas/genética , Animales , Genes de Insecto/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 18S/genética
19.
Science ; 317(5845): 1756-60, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17885136

RESUMEN

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


Asunto(s)
Brugia Malayi/genética , Genoma de los Helmintos , Animales , Brugia Malayi/fisiología , Caenorhabditis/genética , Drosophila melanogaster/genética , Resistencia a Medicamentos/genética , Filariasis/parasitología , Humanos , Datos de Secuencia Molecular
20.
J Bacteriol ; 187(18): 6488-98, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16159782

RESUMEN

Pseudomonas syringae pv. phaseolicola, a gram-negative bacterial plant pathogen, is the causal agent of halo blight of bean. In this study, we report on the genome sequence of P. syringae pv. phaseolicola isolate 1448A, which encodes 5,353 open reading frames (ORFs) on one circular chromosome (5,928,787 bp) and two plasmids (131,950 bp and 51,711 bp). Comparative analyses with a phylogenetically divergent pathovar, P. syringae pv. tomato DC3000, revealed a strong degree of conservation at the gene and genome levels. In total, 4,133 ORFs were identified as putative orthologs in these two pathovars using a reciprocal best-hit method, with 3,941 ORFs present in conserved, syntenic blocks. Although these two pathovars are highly similar at the physiological level, they have distinct host ranges; 1448A causes disease in beans, and DC3000 is pathogenic on tomato and Arabidopsis. Examination of the complement of ORFs encoding virulence, fitness, and survival factors revealed a substantial, but not complete, overlap between these two pathovars. Another distinguishing feature between the two pathovars is their distinctive sets of transposable elements. With access to a fifth complete pseudomonad genome sequence, we were able to identify 3,567 ORFs that likely comprise the core Pseudomonas genome and 365 ORFs that are P. syringae specific.


Asunto(s)
Genes Bacterianos , Genoma Bacteriano , Pseudomonas syringae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Pseudomonas syringae/clasificación , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Especificidad de la Especie , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA