Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Commun Biol ; 5(1): 1174, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329185

RESUMEN

Aberrant DNA methylation patterns are a prominent feature of cancer. Methylation of DNA is mediated by the DNA methyltransferase (DNMT) protein family, which regulates de novo (DNMT3A and DNMT3B) and maintenance (DNMT1) methylation. Mutations in DNMT3A are observed in approximately 22% of acute myeloid leukemia (AML). We hypothesized that DNMT1 or DNMT3B could function as a synthetic lethal therapeutic strategy for DNMT3A-mutant AML. CRISPR-Cas9 tiling screens were performed to identify functional domains within DNMT1/DNMT3B that exhibited greater dependencies in DNMT3A mutant versus wild-type cell lines. Although increased sensitivity to DNMT1 mutation was observed in some DNMT3A mutant cellular models tested, the subtlety of these results prevents us from basing any conclusions on a synthetic lethal relationship between DNMT1 and DNMT3A. Our data suggests that a therapeutic window for DNMT1 methyltransferase inhibition in DNMT3A-driven AML may exist, but validation in more biologically relevant models is required.


Asunto(s)
Leucemia Mieloide Aguda , Metiltransferasas , Humanos , Metiltransferasas/genética , ADN Metiltransferasa 3A , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Leucemia Mieloide Aguda/genética , Mutación , ADN
2.
Nat Commun ; 8: 14290, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134252

RESUMEN

Peripheral T-cell lymphomas (PTCL) are aggressive diseases with poor response to chemotherapy and dismal survival. Identification of effective strategies to target PTCL biology represents an urgent need. Here we report that PTCL are sensitive to transcription-targeting drugs, and, in particular, to THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7). The STAT-signalling pathway is highly vulnerable to THZ1 even in PTCL cells that carry the activating STAT3 mutation Y640F. In mutant cells, CDK7 inhibition decreases STAT3 chromatin binding and expression of highly transcribed target genes like MYC, PIM1, MCL1, CD30, IL2RA, CDC25A and IL4R. In surviving cells, THZ1 decreases the expression of STAT-regulated anti-apoptotic BH3 family members MCL1 and BCL-XL sensitizing PTCL cells to BH3 mimetic drugs. Accordingly, the combination of THZ1 and the BH3 mimetic obatoclax improves lymphoma growth control in a primary PTCL ex vivo culture and in two STAT3-mutant PTCL xenografts, delineating a potential targeted agent-based therapeutic option for these patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Quinasas Ciclina-Dependientes/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Linfoma de Células T/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cromatina/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Femenino , Mutación con Ganancia de Función , Humanos , Indoles , Linfoma de Células T/genética , Linfoma de Células T/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirroles/farmacología , Pirroles/uso terapéutico , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Activadora de Quinasas Ciclina-Dependientes
3.
Oncotarget ; 7(48): 79637-79653, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27793034

RESUMEN

Anaplastic large cell lymphomas (ALCL) represent a peripheral T-cell lymphoma subgroup, stratified based on the presence or absence of anaplastic lymphoma kinase (ALK) chimeras. Although ALK-positive ALCLs have a more favorable outcome than ALK-negative ALCL, refractory and/or relapsed forms are common and novel treatments are needed. Here we investigated the therapeutic potential of a novel bromodomain inhibitor, OTX015/MK-8628 in ALK-positive ALCLs.The effects of OTX015 on a panel of ALK+ ALCL cell lines was evaluated in terms of proliferation, cell cycle and downstream signaling, including gene expression profiling analyses. Synergy was tested with combination targeted therapies.Bromodomain inhibition with OTX015 led primarily to ALCL cell cycle arrest in a dose-dependent manner, along with downregulation of MYC and its downstream regulated genes. MYC overexpression did not compensate this OTX015-mediated phenotype. Transcriptomic analysis of OTX015-treated ALCL cells identified a gene signature common to various hematologic malignancies treated with bromodomain inhibitors, notably large cell lymphoma. OTX015-modulated genes included transcription factors (E2F2, NFKBIZ, FOS, JUNB, ID1, HOXA5 and HOXC6), members of multiple signaling pathways (ITK, PRKCH, and MKNK2), and histones (clusters 1-3). Combination of OTX015 with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib led to cell cycle arrest then cell death, and combination with suboptimal doses of the ALK inhibitor CEP28122 caused cell cycle arrest. When OTX015 was associated with GANT61, a selective GLI1/2 inhibitor, C1156Y-resistant ALK ALCL growth was impaired.These findings support OTX015 clinical trials in refractory ALCL in combination with inhibitors of interleukin-2-inducible kinase or SHH/GLI1.


Asunto(s)
Acetanilidas/farmacología , Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Proteínas Tirosina Quinasas Receptoras/genética , Quinasa de Linfoma Anaplásico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Concentración 50 Inhibidora , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patología , Fenotipo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transcriptoma
4.
Curr Opin Pharmacol ; 23: 39-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26051994

RESUMEN

The anaplastic lymphoma kinase (ALK) gene is a member of the insulin receptor superfamily and it has been associated with more than twenty distinct chimera, including established drivers of several human cancers. Multiple clinical trials have proven that the pharmacological inhibition of ALK signaling leads to remarkable clinical improvement and improves the quality of life of ALK+ cancer patients. Crizotinib was the first ALKi to achieve approval from the Food and Drug Administration, although additional compounds are now moving into diversified clinical trials.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico , Animales , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/metabolismo
5.
Cancer Cell ; 27(4): 516-32, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25873174

RESUMEN

A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Linfoma Anaplásico de Células Grandes/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Janus Quinasa 1/genética , Ratones , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , FN-kappa B/genética , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Factor de Transcripción STAT3/genética , Transducción de Señal , TYK2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA