Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Vet Med Sci ; 10(3): e1430, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38533755

RESUMEN

BACKGROUND: Leptospirosis is a zoonotic disease. It is particularly prevalent in tropical countries and has major consequences for human and animal health. In Benin, the disease's epidemiology remains poorly understood, especially in livestock, for which data are lacking. OBJECTIVES: To characterise Leptospira seroprevalence and locally circulating serogroups in livestock from Cotonou and to estimate the prevalence of Leptospira renal carriage in cattle. METHODS: We conducted a cross-sectional study in February 2020 during which livestock were sampled at an abattoir and in an impoverished city district. We analysed blood samples from 279 livestock animals (i.e. cattle, sheep, goats and pigs) using the microscopic agglutination test. Additionally, samples of renal tissue from 100 cattle underwent 16s rRNA (rrs) real-time PCR analysis. RESULTS: For the 131 cattle, 85 sheep, and 50 goats tested, seroprevalence was 18% (95% confidence interval [CI] [12%, 26%]), 9% (95% CI [4%, 17%] and 2% (95% CI [0%, 9%]), respectively, and most of the seropositive animals were associated with 1:100 titres. All 13 pigs were seronegative. Leptospira DNA was found in the renal tissue of 10% (95% CI [5%, 18%]) of the cattle tested (n = 100). Leptospira borgpetersenii was the main species present (n = 7), but Leptospira interrogans (n = 2) and Leptospira kirschneri (n = 1) were also detected. Various serogroups (Canicola, Grippotyphosa, Sejroe, Icterohaemorrhagiae, Pomona, Pyrogenes, Australis and Autumnalis) were detected using microscopic agglutination test without a clear predominance of any of them. CONCLUSIONS: These results suggest that abattoir workers and people living in close contact with livestock in poor urban areas are exposed to the risk of Leptospira infection.


Asunto(s)
Enfermedades de los Bovinos , Enfermedades de las Cabras , Leptospira , Leptospirosis , Enfermedades de las Ovejas , Enfermedades de los Porcinos , Animales , Bovinos , Humanos , Ovinos , Porcinos , Ganado/genética , Estudios Seroepidemiológicos , Estudios Transversales , Benin , ARN Ribosómico 16S , Leptospirosis/veterinaria , Cabras/genética , Enfermedades de los Bovinos/epidemiología , Enfermedades de las Cabras/epidemiología , Enfermedades de las Ovejas/epidemiología , Enfermedades de los Porcinos/epidemiología
2.
Porcine Health Manag ; 8(1): 15, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379346

RESUMEN

BACKGROUND: Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira and is responsible for significant economic porcine livestock losses. Knowledge of Leptospira serogroups and their distributions is important for evaluation of the relevance of leptospirosis management measures, including use of the prophylactic vaccine that was recently made available in France. A retrospective study was conducted to determine the relationships between different circulating Leptospira serogroups. Pigs from across France presenting clinical signs suggestive of leptospirosis were tested with the microagglutination test (MAT) between 2011 and 2017. We used weighted averages to determine serogroup distributions according to MAT results and considering cross-reactions. RESULTS: A total of 19,395 pig sera, mostly from Brittany, were tested, and 22.7% were found to be positive for at least one Leptospira serogroup. Analysis of the 4,346 seropositive results for which the putative infective serogroup could be defined, revealed that two out of ten serogroups were much more frequent than the others: Australis (48.5%) and Icterohaemorrhagiae (38.2%). Other serogroups, including Autumnalis, Panama, Ballum, Tarassovi, Sejroe, Grippotyphosa, Bataviae, and Pomona, were less common. CONCLUSIONS: Although diagnostic laboratory data cannot be extrapolated to infer the distribution of Leptospira serogroups at the nationwide scale in France, the analysis of such data can provide an overview of the relationship between circulating Leptospira serogroups in space and time. During the last decade, protection against the serogroups Australis and Icterohaemorrhagiae would have prevented most of the clinical porcine leptospirosis cases in the large number of farms that we studied. In the future, epidemiological information related to circulating Leptospira serogroups should be extracted from data with a standardized approach for use in nationwide or international surveillance and prophylactic strategy support.

3.
Infect Genet Evol ; 98: 105204, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34999003

RESUMEN

Mammarenaviruses have been a growing concern for public health in Africa since the 1970s when Lassa virus cases in humans were first described in west Africa. In southern Africa, a single outbreak of Lujo virus was reported to date in South Africa in 2008 with a case fatality rate of 80%. The natural reservoir of Lassa virus is Mastomys natalensis while for the Lujo virus the natural host has yet to be identified. Mopeia virus was described for the first time in M. natalensis in the central Mozambique in 1977 but few studies have been conducted in the region. In this study, rodents were trapped between March and November 2019in villages, croplands fields and mopane woodland forest. The aim was to assess the potential circulation and to evaluate the genetic diversity of mammarenaviruses in M. natalensis trapped in the Limpopo National Park and its buffer zone in Massingir district, Mozambique. A total of 534 M. natalensis were screened by RT-PCR and the overall proportion of positive individuals was 16.9%. No significant differences were detected between the sampled habitats (χ2 = 0.018; DF = 1; p = 0.893). The Mopeia virus (bootstrap value 91%) was the Mammarenavirus circulating in the study area sites, forming a specific sub-clade with eight different sub-clusters. We concluded that Mopeia virus circulates in all habitats investigated and it forms a different sub-clade to the one reported in central Mozambique in 1977.


Asunto(s)
Infecciones por Arenaviridae/veterinaria , Arenaviridae/aislamiento & purificación , Murinae , Enfermedades de los Roedores/epidemiología , Animales , Infecciones por Arenaviridae/epidemiología , Ecosistema , Mozambique/epidemiología , Parques Recreativos
4.
PLoS One ; 12(9): e0184015, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28886097

RESUMEN

Brown rats are one of the most widespread urban species worldwide. Despite the nuisances they induce and their potential role as a zoonotic reservoir, knowledge on urban rat populations remains scarce. The main purpose of this study was to characterize an urban brown rat population from Chanteraines park (Hauts-de-Seine, France), with regards to haematology, population genetics, immunogenic diversity, resistance to anticoagulant rodenticides, and community of parasites. Haematological parameters were measured. Population genetics was investigated using 13 unlinked microsatellite loci. Immunogenic diversity was assessed for Mhc-Drb. Frequency of the Y139F mutation (conferring resistance to rodenticides) and two linked microsatellites were studied, concurrently with the presence of anticoagulant residues in the liver. Combination of microscopy and molecular methods were used to investigate the occurrence of 25 parasites. Statistical approaches were used to explore multiple parasite relationships and model parasite occurrence. Eighty-six rats were caught. The first haematological data for a wild urban R. norvegicus population was reported. Genetic results suggested high genetic diversity and connectivity between Chanteraines rats and surrounding population(s). We found a high prevalence (55.8%) of the mutation Y139F and presence of rodenticide residues in 47.7% of the sampled individuals. The parasite species richness was high (16). Seven potential zoonotic pathogens were identified, together with a surprisingly high diversity of Leptospira species (4). Chanteraines rat population is not closed, allowing gene flow and making eradication programs challenging, particularly because rodenticide resistance is highly prevalent. Parasitological results showed that co-infection is more a rule than an exception. Furthermore, the presence of several potential zoonotic pathogens, of which four Leptospira species, in this urban rat population raised its role in the maintenance and spread of these pathogens. Our findings should stimulate future discussions about the development of a long-term rat-control management program in Chanteraines urban park.


Asunto(s)
Resistencia a Medicamentos , Genética de Población , Parásitos , Rodenticidas/farmacología , Animales , Biodiversidad , Biomarcadores , Recuento de Células Sanguíneas , Francia , Variación Genética , Genotipo , Geografía , Fenómenos Inmunogenéticos , Repeticiones de Microsatélite , Parásitos/clasificación , Parásitos/genética , Ratas , Salud Urbana , Vitamina K Epóxido Reductasas/genética
5.
Evol Appl ; 6(4): 721-34, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23789036

RESUMEN

Key evolutionary events associated with invasion success are traditionally thought to occur in the introduced, rather than the native range of species. In the invasive ant Wasmannia auropunctata, however, a shift in reproductive system has been demonstrated within the native range, from the sexual non-dominant populations of natural habitats to the clonal dominant populations of human-modified habitats. Because abiotic conditions of human- modified habitats are hotter and dryer, we performed lab experiments on workers from a set of native and introduced populations, to investigate whether these ecological and genetic transitions were accompanied by a change in thermotolerance and whether such changes occurred before establishment in the introduced range. Thermotolerance levels were higher in native populations from human-modified habitats than in native populations from natural habitats, but were similar in native and introduced populations from human-modified habitats. Differences in thermotolerance could not be accounted for by differences in body size. A scenario based on local adaptation in the native range before introduction in remote areas represents the most parsimonious hypothesis to account for the observed phenotypic pattern. These findings highlight the importance of human land use in explaining major contemporary evolutionary changes.

6.
J Wildl Dis ; 48(1): 148-56, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22247383

RESUMEN

Many zoonotic diseases are caused by rodent-borne viruses. Major fluctuations in the transmission of these viruses have been related to large changes in reservoir host population numbers due to external factors. However, the impact of the pathogen itself on the demography of its reservoir host is often overlooked. We investigated the impact of Puumala virus (PUUV) on survival and reproductive maturation probability of its reservoir host, the bank vole (Myodes glareolus). Three years (2004-06) of data from nine independent sites in southern Belgium were collected and analyzed with a capture-mark-recapture (CMR) method that includes statistical correction for the variation in capture probability of voles. A multistate model based on four states of reproductive activity and PUUV immunoglobulin G (IgG) antibody status was used to estimate survival and probability of transition from one reproductive or infection state to another. Although survival estimates for reproductively active voles were similar between infected and noninfected individuals, PUUV infection in reproductively inactive voles decreased mean monthly survival by 14%. PUUV infection was associated with a threefold increase in the probability of reproductive maturation in bank voles. Moreover, the probability of PUUV IgG seroconversion was three times higher for reproductively active voles compared to reproductively inactive voles. Our model indicates that PUUV infection may alter bank vole population dynamics by affecting both survival and maturation in its host. Additional studies, using CMR methodology with shorter time intervals between trapping sessions and possibly a longer duration, are needed to confirm these findings.


Asunto(s)
Arvicolinae/virología , Fiebre Hemorrágica con Síndrome Renal/veterinaria , Virus Puumala , Enfermedades de los Roedores/virología , Animales , Anticuerpos Antivirales/sangre , Reservorios de Enfermedades/veterinaria , Femenino , Fiebre Hemorrágica con Síndrome Renal/mortalidad , Fiebre Hemorrágica con Síndrome Renal/virología , Inmunoglobulina G/sangre , Masculino , Dinámica Poblacional , Virus Puumala/inmunología , Enfermedades de los Roedores/mortalidad , Estaciones del Año , Análisis de Supervivencia
7.
PLoS One ; 7(8): e43360, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22916249

RESUMEN

Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007-2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread.


Asunto(s)
Lengua Azul/transmisión , Animales , Lengua Azul/epidemiología , Lengua Azul/virología , Virus de la Lengua Azul/patogenicidad , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Ecología , Francia , Insectos Vectores/virología , Lluvia
8.
Evol Appl ; 4(1): 71-88, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25567954

RESUMEN

So far, only a few studies have explicitly investigated the consequences of admixture for the adaptative potential of invasive populations. We addressed this question in the invasive ladybird Harmonia axyridis. After decades of use as a biological control agent against aphids in Europe and North America, H. axyridis recently became invasive in four continents and has now spread widely in Europe. Despite this invasion, a flightless strain is still sold as a biological control agent in Europe. However, crosses between flightless and invasive individuals yield individuals able to fly, as the flightless phenotype is caused by a single recessive mutation. We investigated the potential consequences of admixture between invasive and flightless biological control individuals on the invasion in France. We used three complementary approaches: (i) population genetics, (ii) a mate-choice experiment, and (iii) a quantitative genetics experiment. The invasive French population and the biological control strain showed substantial genetic differentiation, but there are no reproductive barriers between the two. Hybrids displayed a shorter development time, a larger size and a higher genetic variance for survival in starvation conditions than invasive individuals. We discuss the potential consequences of our results with respect to the invasion of H. axyridis in Europe.

9.
Integr Zool ; 2(4): 220-32, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21396039

RESUMEN

Survival and maturation rates of female Mastomys natalensis were analysed based on a ten-year monthly capture-recapture data set. We investigated whether direct and delayed density dependent and independent (rainfall) variables accounted for the considerable variation in demographic traits. It was estimated that seasonal and annual covariates accounted for respectively 29 and 26% of the total variation in maturation rates and respectively 17 and 11% of the variation in survival rates. Explaining the between-year differences in maturation rates with annual past rainfall or density did not improve the model fit. On the other hand we showed that maturation rates were correlated negatively with density the previous month and positively to cumulative rainfall over the past three months. Survival estimates of both adults and subadults varied seasonally, with higher estimates during the increase phase (dry season). The subadults were characterised by a very high survival rate (> 0.95) during this phase. In the decrease phase only minor differences were found between survival rates of subadults and adults. We found that 39% of the between-year variation in survival can be explained by accumulated rainfall over the past year.

10.
J Anim Ecol ; 75(1): 228-38, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16903060

RESUMEN

1. A novel capture-mark-recapture (CMR) method was used to build a multistate model of recruitment by young birds to a breeding population of common guillemots Uria aalge on the Isle of May, Scotland. Recruitment of a total of 2757 individually marked guillemots over 17 years was modelled as a process where individuals had to move from an unobservable state at sea, through a nonbreeding state present in the colony, to the breeding state. The probabilities of individuals returning to the colony in a given year, at age 2 and 3-4 years, were positively correlated with an environmental covariate, the winter North Atlantic Oscillation index (WNAO) in the previous years. 2. For 2 year olds, there was a negative relationship with breeding population size, suggesting that density dependence operated in this colony through limitation of food or some other resource. 3. Survival over the first 2 years of life varied with cohort, but was unrelated to the WNAO. Mean survival over this 2-year period was high at 0.576 (95% CI: 0.444; 0.708). 4. This high survival, combined with a low 'local' survival after age 5 years of 0.695 (0-654; 0.733) and observations of Isle of May chicks at other colonies, suggests that most surviving chicks return to the natal colony before deciding whether to recruit there or move elsewhere.


Asunto(s)
Charadriiformes/crecimiento & desarrollo , Charadriiformes/fisiología , Ambiente , Modelos Biológicos , Envejecimiento/fisiología , Animales , Femenino , Longevidad/fisiología , Masculino , Densidad de Población , Dinámica Poblacional , Crecimiento Demográfico , Estadística como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA