Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Int ; 190: 108850, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38941944

RESUMEN

The National Academies of Sciences, Engineering, and Medicine recommends per- and polyfluoroalkyl substance (PFAS) blood testing for patients with risk of elevated exposure, and the Agency for Toxic Substances and Disease Registry (ATSDR) suggests PFAS blood testing based on exposure. Barriers to PFAS blood testing include cost, access to labs, and evolving laboratory methods. We quantify water and serum PFAS levels among a highly-exposed cohort in an area with groundwater contaminated by historical agricultural biosolid application. We compare the gold standard PFAS serum test with a commercial test and results from a one-compartment toxicokinetic model. Participants were adults (n = 30) whose household (n = 19) water had levels of the sum of six PFAS > 500 ng/L. Serum PFAS were measured using liquid chromatography-tandem mass spectrometry. Demographic and water consumption data were collected via telephone. Serum PFAS results from the commercial test were accessed via medical record. Statistical analysis included descriptive statistics and bivariate plots of serum levels. Perfluorohexanoic acid, perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorobutanesulfonic acid, perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS) were detected in 19 wells, and PFHpA, PFOA, PFNA, perfluorodecanoic acid, perfluoroundecanoic acid, PFHxS, and PFOS were detected in at least 19 participants' serum. In well water, PFOA and PFOS levels had geometric means (GMs) of 1749 ng/L (geometric standard deviation [GSD] 2.4) and 887 ng/L (GSD 19.7), respectively. In serum, PFOA and PFOS had GMs of 116.2 µg/L (GSD 13.5) and 58.3 µg/L (GSD 13.8), respectively. Our results are comparable with and had a wider mix of PFAS than other high-exposure cohorts. There was good agreement between the commercial and gold standard tests for PFOA, PFNA, and PFHxS, and mixed agreement between the gold standard test and modeled predictions, suggesting water-based toxicokinetic models of serum PFAS may be inadequate for assessing exposure in this population.

2.
Sci Total Environ ; 933: 173157, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38740209

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S. pregnant individuals. We examined associations of dietary factors during pregnancy with PFAS concentrations in maternal plasma and human milk in the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA), were measured in maternal plasma collected at ∼28 gestational weeks and human milk collected at ∼6 postpartum weeks. Sociodemographic, lifestyle and reproductive factors were collected from prenatal questionnaires and diet from food frequency questionnaires at ∼28 gestational weeks. We used adaptive elastic net (AENET) to identify important dietary variables for PFAS concentrations. We used multivariable linear regression to assess associations of dietary variables selected by AENET models with PFAS concentrations. Models were adjusted for sociodemographic, lifestyle, and reproductive factors, as well as gestational week of blood sample collection (plasma PFAS), postpartum week of milk sample collection (milk PFAS), and enrollment year. A higher intake of fish/seafood, eggs, coffee, or white rice during pregnancy was associated with higher plasma or milk PFAS concentrations. For example, every 1 standard deviation (SD) servings/day increase in egg intake during pregnancy was associated with 4.4 % (95 % CI: 0.6, 8.4), 3.3 % (0.1, 6.7), and 10.3 % (5.6, 15.2) higher plasma PFOS, PFOA, and PFDA concentrations respectively. Similarly, every 1 SD servings/day increase in white rice intake during pregnancy was associated with 7.5 % (95 % CI: -0.2, 15.8) and 12.4 % (4.8, 20.5) greater milk PFOS and PFOA concentrations, respectively. Our study suggests that certain dietary factors during pregnancy may contribute to higher PFAS concentrations in maternal plasma and human milk, which could inform interventions to reduce PFAS exposure for both birthing people and offspring.


Asunto(s)
Ácidos Alcanesulfónicos , Dieta , Contaminantes Ambientales , Fluorocarburos , Leche Humana , Humanos , Fluorocarburos/sangre , Fluorocarburos/análisis , Leche Humana/química , Femenino , Dieta/estadística & datos numéricos , Contaminantes Ambientales/sangre , Contaminantes Ambientales/análisis , New Hampshire , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/sangre , Adulto , Cohorte de Nacimiento , Exposición Materna/estadística & datos numéricos , Embarazo , Caprilatos/sangre , Caprilatos/análisis , Estudios de Cohortes , Exposición Dietética/estadística & datos numéricos , Exposición Dietética/análisis , Ácidos Decanoicos/sangre , Ácidos Decanoicos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA