Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Anal Chem ; 96(37): 14715-14719, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39229957

RESUMEN

Polymer conjugation has risen in importance over the past three decades as a means of increasing the in vivo half-life of biotherapeutics, with benefits including better stability, greater drug efficacy, and lower toxicity. However, the intrinsic variability of polymer synthesis results in products with broad distributions in chain length and branching structure, complicating quality control for successful functionalization and downstream conjugation. Frequently, a combination of several analytical techniques is required for comprehensive characterization. While liquid chromatography-mass spectrometry (LC-MS) is a powerful platform that can provide detailed molecular features of polymers, the mass spectra are inherently challenging to interpret due to high mass polydispersity and overlapping charge distributions. Here, by leveraging Fourier transform-based deconvolution and macromolecular mass defect analysis, we demonstrate a new way to streamline pharmaceutical polymer analysis, shedding light on polymer size, composition, branching, and end-group functionalization with the capability for reaction monitoring.


Asunto(s)
Análisis de Fourier , Espectrometría de Masas , Polímeros , Polímeros/química , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Sustancias Macromoleculares/química , Peso Molecular , Cromatografía Líquida con Espectrometría de Masas
2.
Anal Chem ; 95(6): 3180-3186, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36606446

RESUMEN

In recent years, CRISPR-Cas9 genome editing has become an important technology in biomedical research and has demonstrated tremendous therapeutic potential. With Cas9 endonuclease, the use of single guide ribonucleic acids (sgRNAs) allows for sequence-specific cutting on target double-stranded deoxyribonucleic acids. Therefore, the design and quality of sgRNAs can greatly affect the efficiency and specificity of genome editing. Mass spectrometry (MS) has been a powerful tool to detect molecular features and sequence a variety of biomolecules; however, as the sizes of oligonucleotides get larger, it becomes more challenging to desalt samples and achieve high-quality intact spectra with effective fragmentation. Here, we develop a simple but effective online column-based clean-up method (reversed-phase column in a size exclusion mode) that removes formulation salts and metal adducts from larger oligonucleotides upon entering the mass spectrometer in a consistent manner. Using the top-down approach without any nuclease digestion, we characterized and sequenced 100-nucleotide-long sgRNAs by higher-energy collision dissociation (HCD), collision-induced dissociation (CID), ultraviolet photodissociation (UVPD), and activated electron photodetachment (a-EPD). In a single 10 min liquid chromatography-tandem MS (LC-MS/MS) run, CID yielded the best sequence coverage, of 67%. When adding complementary UVPD and a-EPD runs, we achieved 80% overall sequence coverage and 100% cleavages for the variable sequence, the first 20 nucleotides from the 5' end. This LC-MS/MS platform provides a facile top-down workflow to analyze and sequence larger chemically modified oligonucleotides with no sample treatment.


Asunto(s)
Espectrometría de Masas en Tándem , Rayos Ultravioleta , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Electrones
3.
Anal Chem ; 93(44): 14792-14801, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34699173

RESUMEN

CRISPR/Cas9 is a powerful genome editing approach in which a Cas9 enzyme and a single guide RNA (sgRNA) form a ribonucleoprotein complex effectively targeting site-specific cleavages of DNA. Accurate sequencing of sgRNA is critical to patient safety and is the expectation by regulatory agencies. In this paper, we present the full sequencing of sgRNA via parallel ribonuclease (RNase) T1, A, and U2 digestions and the simultaneous separation and identification of the digestion products by hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution mass spectrometry (HRMS). When using RNase T1 digestion alone, a maximal sequence coverage of 81% was obtained excluding the nonunique fragments. Full sgRNA sequencing was achieved using unique fragments generated by RNase T1, A, and U2 parallel digestions. Thorough optimization of sgRNA digestions was performed by varying the nuclease-to-sgRNA ratio, buffer conditions, and reaction times. A biocompatible ethylene-bridged hybrid amide column was evaluated for the separation of RNase digestion products. To our knowledge, it is the first time that (i) RNA digests are separated and identified by HILIC-HRMS and (ii) chemically modified sgRNAs are directly sequenced via a bottom-up approach.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Cromatografía Liquida , Digestión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Ribonucleasas
4.
Anal Chem ; 91(7): 4672-4679, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30844257

RESUMEN

Lipooligosaccharides (LOS), composed of hydrophilic oligosaccharides and hydrophobic lipid A domains, are found on the outer membranes of Gram-negative bacteria. Here we report the characterization of deacylated LOS of LPS by activated-electron photodetachment mass spectrometry. Collision induced dissociation (CID) of these phosphorylated oligosaccharides produces simple MS/MS spectra with most fragment ions arising from cleavages near the reducing end of the molecule where the phosphate groups are located. In contrast, 193 nm ultraviolet photodissociation (UVPD) generates a wide array of product ions throughout the oligosaccharide including cross-ring fragments that illuminate the branching patterns. However, there are also product ions that are redundant or uninformative, resulting in more congested spectra that complicate interpretation. In this work, a hybrid UVPD-CID approach known as activated-electron photodetachment (a-EPD) affords less congested spectra than UVPD alone and richer fragmentation patterns than CID alone. a-EPD combines UVPD of negatively charged oligosaccharides to yield abundant charge-reduced radical ions which are subsequently interrogated by collisional activation. CID of the charge-reduced precursors results in extensive fragmentation throughout the backbone of the oligosaccharide. This hybridized a-EPD approach was employed to characterize the structure and branching pattern of deacylated LOS of E. coli.


Asunto(s)
Escherichia coli/metabolismo , Lipopolisacáridos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Antígenos/química , Antígenos/inmunología , Electrones , Escherichia coli/inmunología , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo
5.
Anal Chem ; 90(14): 8523-8530, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29902373

RESUMEN

Deciphering disulfide bond patterns in proteins remains a significant challenge. In the present study, interlinked disulfide bonds connecting peptide chains are homolytically cleaved with 193 nm ultraviolet photodissociation (UVPD). Analysis of insulin showcased the ability of UVPD to cleave multiple disulfide bonds and provide sequence coverage of the peptide chains in the same MS/MS event. For proteins containing more complex disulfide bonding patterns, an approach combining partial reduction and alkylation mitigated disulfide scrambling and allowed assignment of the array of disulfide bonds. The 4 disulfide bonds of lysozyme and the 19 disulfide bonds of serotransferrin were characterized through LC/UVPD-MS analysis of nonreduced and partially reduced protein digests.


Asunto(s)
Disulfuros/análisis , Insulina/química , Espectrometría de Masas/métodos , Muramidasa/química , Transferrina/química , Secuencia de Aminoácidos , Animales , Bovinos , Humanos , Péptidos/química , Fotólisis , Rayos Ultravioleta
6.
Analyst ; 143(15): 3607-3618, 2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-29968868

RESUMEN

Cationic antimicrobial peptides (CAMPs) have been known to act as multi-modal weapons against Gram-negative bacteria. As a new approach to investigate the nature of the interactions between CAMPs and the surfaces of bacteria, native mass spectrometry and two MS/MS strategies (ultraviolet photodissociation (UVPD) and higher energy collisional activation (HCD)) are used to examine formation and disassembly of saccharolipid·peptide complexes. Kdo2-lipid A (KLA) is used as a model saccharolipid to evaluate complexation with a series of cationic peptides (melittin and three analogs). Collisional activation of the KLA·peptide complexes results in the disruption of electrostatic interactions, resulting in apo-sequence ions with shifts in the distribution of ions compared to the fragmentation patterns of the apo-peptides. UVPD of the KLA·peptide complexes results in both apo- and holo-sequence ions of the peptides, the latter in which the KLA remains bound to the truncated peptide fragment despite cleavage of a covalent bond of the peptide backbone. Mapping both the N- and C-terminal holo-product ions gives insight into the peptide motifs (specifically an electropositive KRKR segment and a proline residue) that are responsible for mediating the electrostatic interactions between the cationic peptides and saccharolipid.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Lipopolisacáridos/química , Meliteno/química , Mapeo de Interacción de Proteínas , Peso Molecular , Péptidos/química , Espectrometría de Masas en Tándem , Rayos Ultravioleta
7.
Analyst ; 143(13): 3091-3099, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29881855

RESUMEN

Structural characterization of lipid A from Gram-negative bacteria remains a significant challenge, especially with respect to localizing modifications of the phosphate groups typically found on the reducing and non-reducing ends of the ß-1',6-linked glucosamine disaccharide backbone of lipid A. As reported here, combining traditional collisional activated dissociation (CAD) and ultraviolet photodissociation (UVPD) in a hybrid MS3 approach facilitates identification and localization of substituents of the phosphate groups. The focus is on rapid identification and characterization of substituted lipid A species with specific emphasis on the modifications on the 1 and 4' phosphate moieties. Mapping these modifications, typically ones that modify the surface charges of lipopolysaccharides, is particularly important owing to the impact of these types of modifications on antibiotic resistance. The presence of phosphoethanolamine, aminoarabinose, and galactosamine moieties in hexaacylated and heptaacylated lipid A species, including ones from Enterobacter cloacae and Acinetobacter baumannii, are characterized using a targeted MS3 strategy to identify glycosidic product ions (1,5X1 and 0,4A2, typically) which allow localization of the substituents.

8.
Biopolymers ; 108(3)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28073163

RESUMEN

Antimicrobial peptides (AMPs) occur widely in nature and have been studied for their therapeutic potential. AMPs are of interest due to the large number of possible chemical structural combinations using natural and unnatural amino acids, with varying effects on their biological activities. Using physicochemical properties from known naturally occurring amphipathic cationic AMPs, several hydrocarbon-stapled lipopeptides (HSLPs) were designed, synthesized, and tested for antimicrobial properties. Peptides were chemically modified by N-terminal acylation, C-terminal amidation, and some were hydrocarbon stapled by intramolecular olefin metathesis. The effects of peptide length, amphipathic character, and stapling on antimicrobial activity were tested against Escherichia coli, three species of Gram-positive bacteria (Staphylococcus aureus, Bacillus megaterium, and Enterococcus faecalis), and two strains of Candida albicans. Peptides were shown to disrupt liposomes of different phospholipid composition, as measured by leakage of a fluorescent compound from vesicles. Peptides with (S)-2-(4'-pentenyl)-alanine substituted for l-alanine in a reference peptide showed a marked increase in antimicrobial activity, hemolysis, and membrane disruption. Stapled peptides exhibited slightly higher antimicrobial potency; those with greatest hydrophobic character showed the greatest hemolysis and liposome leakage, but lower antimicrobial activity. The results support a model of HSLPs as membrane-disruptive AMPs with potent antimicrobial activity and relatively low hemolytic potential at biologically active peptide concentrations.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Hidrocarburos/farmacología , Lipopéptidos/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Bacillus megaterium/efectos de los fármacos , Bacillus megaterium/patogenicidad , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/patogenicidad , Eritrocitos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Hemólisis , Humanos , Hidrocarburos/síntesis química , Hidrocarburos/química , Lipopéptidos/síntesis química , Lipopéptidos/química , Liposomas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Relación Estructura-Actividad
9.
Antibodies (Basel) ; 13(2)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38651410

RESUMEN

As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow that combines limited proteolysis with HCD-triggered EThcD and UVPD mass spectrometry for the characterization of the resulting middle-down large-sized peptides of T-DM1. Fifty-three payload-containing peptides were identified, ranging in mass from 1.8 to 16.9 kDa, and leading to the unambiguous identification of 46 out of 92 possible conjugation sites. In addition, seven peptides were identified containing multiple payloads. The characterization of these types of heterogeneous peptides represents an important step in unraveling the combinatorial nature of lysine-conjugated ADCs.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39051157

RESUMEN

GDC-6036 is a covalent KRAS G12C inhibitor that demonstrates high potency and selectivity. Structurally, GDC-6036 consists of several motifs that make the analytical characterization of this molecule challenging, including a highly basic pyrrolidine motif bonded to a quinazoline ring via an ether bond and an atropisomeric carbon-carbon bond between functionalized pyridine and quinazoline groups. Structurally, the desired atropisomer was synthesized via an atroposelective Negishi coupling with very high yield. However, having a direct way to analyze and confirm the presence of the atropisomeric species remained challenging in routine analytical workflows. In this study, both variable temperature nuclear magnetic resonance (VT-NMR) and two different approaches of in-line ion mobility coupled to liquid chromatography mass spectrometry (LC-MS) workflows were evaluated for the characterization of GDC-6036 and its undesired atropisomer (Compound B) to support synthetic route development. Briefly, both VT-NMR and traveling wave ion mobility spectrometry (TWIMS) enabled by structures for lossless ion manipulation (SLIM) technology coupled to high resolution MS (HRMS) are able to elucidate the structures of the atropisomers in a complex mixture. Drift tube IMS (DTIMS) was also evaluated, but lacked the resolving power to demonstrate separation between the two species in a mixture, but did show slight differences in their arrival times when multiplexed and injected separately. The determined resolving power (Rp) by multiplexing the ions via DTIMS was 67.3 and 60.5 for GDC-6036 and Compound B, respectively, while the two peak resolving power (Rpp) was determined to be 0.41, indicating inadequate resolution between the two species. Alternatively, the SLIM-IM studies showed Rp of 103.8 and 99.4, with a Rpp of 2.64, indicating good separation between the atropisomers. Furthermore, the CCS/z for GDC-6036 and Compound B was determined to be 231.2 Å2/z and 235.0 Å2/z, respectively. Quantitative experiments demonstrate linearity (R2 >0.99) for both GDC-6036 and Compound B while maintaining separation via SLIM-IM. Spike recoveries of one atropisomer relative to the other yielded strong recoveries (98.7% to 102.5%) while maintaining reproducibility (<7% RSD). The study herein describes the analytical process for evaluating new technologies and strategies for implementation in routine biopharmaceutical characterization workflows.

11.
J Pharm Biomed Anal ; 208: 114466, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34808518

RESUMEN

The presence of oligomeric impurities in drugs is often overlooked and less studied due to conventional small molecule analytical methods which are often not capable of capturing these oligomers. In the present work, the oligomer species of a lipophilic active pharmaceutical ingredient (API) containing an azetidine ring was investigated. No separation was observed by reversed-phase liquid chromatography (RPLC) methods, and only a partial separation of oligomer peaks was achieved by a size exclusion chromatography (SEC) method. To improve the resolution of the different oligomers species and understand the root cause of the formation of the oligomers, a selective comprehensive two-dimensional liquid chromatography (2D-LC) method was developed by coupling SEC to RPLC. The selective comprehensive SEC × RPLC method allowed the separation of 16 species and evidenced four main groups of oligomer impurities. The contour plots of 3 API lots helped to visualize the oligomer profiles and quickly compare the difference between these lots. Finally, the oligomer peaks separated by 2D-LC were identified by high-resolution mass spectrometry (HRMS) using a Q Exactive mass spectrometer. The developed 2D-LC/HRMS workflow provides a fast and generic screening approach to quickly examine and visualize the oligomeric impurities in API materials, and direct the impurity control strategy during process development.


Asunto(s)
Cromatografía de Fase Inversa , Preparaciones Farmacéuticas , Cromatografía en Gel , Cromatografía Liquida , Espectrometría de Masas
12.
J Pharm Biomed Anal ; 211: 114622, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35131673

RESUMEN

In pharmaceutical development, structural elucidation of small molecules from process related impurities and degradation products is an essential component. As one of the most important methods in the toolbox, high resolution mass spectrometry (HRMS) and specifically tandem mass spectrometry (MS/MS) often provide fast and informative structural insights. However, many small molecule drugs containing certain biological relevant pharmacophores result in limited numbers of fragments when using traditional collision based fragmentation techniques, such as higher energy collisional dissociation (HCD), due to its inherent preference of cleaving the weakest bond first. As an alternative, ultraviolet photodissociation (UVPD), which irradiates the precursor ion with high energy photons, can lead to more extensive fragmentation from the readily UV absorbing small molecules. Here, we showcase the advantage of UVPD over HCD on pyrrolidine and piperidine containing molecules derivatized from a model compound, telmisartan. While HCD only yielded a single, highly abundant ion resulting from the pyrrolidine and pipieridine ring cleavage, UVPD generated rich and structurally informative fragment ions. UVPD is an attractive and powerful alternative for traditional fragmentation techniques for small molecule structural elucidation.


Asunto(s)
Espectrometría de Masas en Tándem , Rayos Ultravioleta , Iones , Piperidinas , Pirrolidinas , Espectrometría de Masas en Tándem/métodos
13.
Acta Crystallogr C Struct Chem ; 77(Pt 9): 537-543, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34482297

RESUMEN

5α,14α-Androstane (C19H32) crystallizes in two different polymorphic forms in the same vapor diffusion experiment. The major form (Form I) crystallizes as thin plates in the space group P21, with Z = 4. These plates are twinned along a long c axis of length 43 Šand readily suffer from radiation damage when diffracted. The minor form (Form II) crystallizes as fine needles in the space group P212121, Z = 3. In the minor form, 5α,14α-androstane cocrystallizes with 5α,14α-androstan-17-one, an oxidation product of 5α,14α-androstane. The presence of 5α,14α-androstan-17-one in the minor form of the crystals was confirmed by HR-MS. Form II can be crystallized as a pure form without the ketone impurity using a different solvent system. High level density functional theory (DFT) lattice free energy calculations were performed and show that both pure forms are isoergic within the estimated error of the calculations.

14.
J Pharm Biomed Anal ; 195: 113893, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33445001

RESUMEN

Top-down characterization of disulfide-rich peptides and proteins presents many challenges due to the constrained and protected amino acid backbone. Typically, chemical reduction is required to reduce the disulfide bonds and/or enzymatic digestion (bottom-up analysis) is utilized to selectively cleave the amino acid sequence prior to mass spectrometry analysis owing to the challenges associated with intact, top-down analysis of these biomolecules. While extravagant top-down characterization techniques such as ultraviolet photodissociation (UVPD) or electron capture dissociation (ECD), have demonstrated the ability to break disulfide bonds in top-down workflows, implementation of these technologies and analysis of the resulting fragmentation spectra is not trivial and often inaccessible to many laboratories and users. In the study presented herein, traditional collision induced dissociation (CID) of disulfide-rich peptides is performed to confirm the disulfide bond connectivity and localize chemical modifications for these synthetic therapeutic peptides. While collisional activation does not fragment the peptide backbone linearly (typical N- and C-terminal fragment ions) within the disulfide-bonded regions, internal and external ions are consistently produced throughout the sequence via secondary fragmentation pathways. In this study, seven disulfide-rich peptides (Peptides A - G) with similar disulfide connectivity but varying amino acid composition were subjected to collisional activation for sequencing and disulfide bond confirmation. While only four linear b- and y-type fragment ions are produced for these peptides, fragmentation throughout the amino acid sequence is observed when searching for internal and external fragment ions. These ions are typically not considered during traditional top-down sequencing experiments due to the computational challenge of having an increased search space for fragment ion identification. Through the identification of reproducible internal and external fragment ions, site-specific modifications can also be localized, such as oxidation on the 18th residue in Peptide A. Ultimately, this observation and identification of internal and external ions simplifies the experimental process and wet-chemistry required to accurately depict the disulfide connectivity and the sequencing of these traditionally challenging biomolecules. Further consideration to these non-traditional fragment ions should be given during top-down intact peptide and protein analysis, especially when non-linear sequences are involved.


Asunto(s)
Péptidos , Proteínas , Secuencia de Aminoácidos , Disulfuros , Iones
15.
J Pharm Sci ; 110(6): 2362-2371, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33652014

RESUMEN

Constrained peptides (CPs) have emerged as attractive candidates for drug discovery and development. To fully unlock the therapeutic potential of CPs, it is crucial to understand their physical stability and minimize the formation of aggregates that could induce immune responses. Although amyloid like aggregates have been researched extensively, few studies have focused on aggregates from other peptide scaffolds (e.g., CPs). In this work, a streamlined approach to effectively profile the nature and formation pathway of CP aggregates was demonstrated. Aggregates of various sizes were detected and shown to be amorphous. Though no major changes were found in peptide structure upon aggregation, these aggregates appeared to have mixed natures, consisting of primarily non-covalent aggregates with a low level of covalent species. This co-existence phenomenon was also supported by two kinetic pathways observed in time- and temperature-dependent aggregation studies. Furthermore, a stability study with 8 additional peptide variants exhibited good correlation between aggregation propensity and peptide hydrophobicity. Therefore, a dual aggregation pathway was proposed, with the non-covalent aggregates driven by hydrophobic interactions, whereas the covalent ones formed through disulfide scrambling. Overall, the workflow presented here provides a powerful strategy for comprehensive characterization of peptide aggregates and understanding their mechanisms of formation.


Asunto(s)
Amiloide , Péptidos , Disulfuros , Interacciones Hidrofóbicas e Hidrofílicas , Fragmentos de Péptidos
16.
J Am Soc Mass Spectrom ; 31(5): 1140-1150, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32275426

RESUMEN

Ultraviolet photodissociation (UVPD) has emerged as a promising tool to characterize proteins with regard to not only their primary sequences and post-translational modifications, but also their tertiary structures. In this study, three metal-binding proteins, Staphylococcal nuclease, azurin, and calmodulin, are used to demonstrate the use of UVPD to elucidate metal-binding regions via comparisons between the fragmentation patterns of apo (metal-free) and holo (metal-bound) proteins. The binding of staphylococcal nuclease to calcium was evaluated, in addition to a series of lanthanide(III) ions which are expected to bind in a similar manner as calcium. On the basis of comparative analysis of the UVPD spectra, the binding region for calcium and the lanthanide ions was determined to extend from residues 40-50, aligning with the known crystal structure. Similar analysis was performed for both azurin (interrogating copper and silver binding) and calmodulin (four calcium binding sites). This work demonstrates the utility of UVPD methods for determining and analyzing the metal binding sites of a variety of classes of proteins.


Asunto(s)
Azurina/química , Calmodulina/química , Metales/metabolismo , Nucleasa Microcócica/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Elementos de la Serie de los Lantanoides/metabolismo , Modelos Moleculares , Espectrometría de Masa por Ionización de Electrospray/métodos
17.
ACS Nano ; 13(12): 14070-14079, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31755695

RESUMEN

DNA-templated silver clusters (AgC) are fluorescent probes and biosensors whose electronic spectra can be tuned by their DNA hosts. However, the underlying rules that relate DNA sequence and structure to DNA-AgC fluorescence and photophysics are largely empirical. Here, we employ 193 nm activated electron photodetachment (a-EPD) mass spectrometry as a hybrid MS3 approach to gain structural insight into these nanoscale chromophores. Two DNA-AgC systems are investigated with a 20 nt single-stranded DNA (ssDNA) and a 28 nt hybrid hairpin/single-stranded DNA (hpDNA). Both oligonucleotides template Ag10 clusters, but the two complexes are distinct chromophores: the former has a violet absorption at 400 nm with no observable emission, while the latter has a blue-green absorption at 490 nm with strong green emission at 550 nm. Via identification of both apo and holo (AgC-containing) sequence ions generated upon a-EPD and mapping areas of sequence dropout, specific DNA regions that encapsulate the AgC are assigned and attributed to the coordination with the DNA nucleobases. These a-EPD footprints are distinct for the two complexes. The ssDNA contacts the cluster via four nucleobases (CCTT) in the central region of the strand, whereas the hpDNA coordinates the cluster via 13 nucleobases (TTCCCGCCTTTTG) in the double-stranded region of the hairpin. This difference is consistent with prior X-ray scattering spectra and suggests that the clusters can adapt to different DNA hosts. More importantly, the a-EPD footprints directly identify the nucleobases that are in direct contact with the AgC. As these contacting nucleobases can tune the electronic structures of the Ag core and protect the AgC from collisional quenching in solution, understanding the DNA-silver contacts within these complexes will facilitate future biosensor designs.


Asunto(s)
ADN/química , Electrones , Colorantes Fluorescentes/química , Luz , Espectrometría de Masas , Nanopartículas/química , Plata/química , Secuencia de Bases
18.
ACS Sens ; 4(1): 170-179, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30525472

RESUMEN

Here, we use a recently developed electrochemical sensing platform of transparent carbon ultramicroelectrode arrays (T-CUAs) for the in vitro detection of phenazine metabolites from the opportunistic human pathogen Pseudomonas aeruginosa. Specifically, redox-active metabolites pyocyanin (PYO), 5-methylphenazine-1-carboxylic acid (5-MCA), and 1-hydroxyphenazine (OHPHZ) are produced by P. aeruginosa, which is commonly found in chronic wound infections and in the lungs of cystic fibrosis patients. As highly diffusible chemicals, PYO and other metabolites are extremely toxic to surrounding host cells and other competing microorganisms, thus their detection is of great importance as it could provide insights regarding P. aeruginosa virulence mechanisms. Phenazine metabolites are known to play important roles in cellular functions; however, very little is known about how their concentrations fluctuate and influence cellular behaviors over the course of infection and growth. Herein we report the use of easily assembled, low-cost electrochemical sensors that provide rapid response times, enhanced sensitivity, and high reproducibility. As such, these T-CUAs enable real-time electrochemical monitoring of PYO and another extremely reactive and distinct redox-active phenazine metabolite, 5-methylphenazine-1-carboxylic acid (5-MCA), from a highly virulent laboratory P. aeruginosa strain, PA14. In addition to quantifying phenazine metabolite concentrations, changes in phenazine dynamics are observed in the biosynthetic route for the production of PYO. Our quantitative results, over a 48-h period, show increasing PYO concentrations during the first 21 h of bacterial growth, after which PYO levels plateau and then slightly decrease. Additionally, we explore environmental effects on phenazine dynamics and PYO concentrations in two growth media, tryptic soy broth (TSB) and lysogeny broth (LB). The maximum concentrations of cellular PYO were determined to be 190 ± 5 µM and 150 ± 1 µM in TSB and LB, respectively. Finally, using desorption electrospray ionization (DESI) and nanoelectrospray ionization (nano-ESI) mass spectrometry we confirm the detection and identification of reactive phenazine metabolites.


Asunto(s)
Carbono/química , Microelectrodos , Pseudomonas aeruginosa/metabolismo , Piocianina/análisis , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Análisis por Micromatrices/métodos , Fenazinas/análisis , Fenazinas/metabolismo , Piocianina/biosíntesis , Piocianina/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray
19.
Phytochemistry ; 152: 61-70, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29734037

RESUMEN

Widespread resistance to antimicrobial and cancer therapeutics is evolving in every country worldwide and has a direct impact on global health, agriculture and the economy. The specificity and selectivity of bioactive peptide natural products present a possible stopgap measure to address the ongoing deficit of new therapeutic compounds. PepSAVI-MS (Statistically-guided bioActive Peptides prioritized VIa Mass Spectrometry) is an adaptable method for the analysis of natural product libraries to rapidly identify bioactive peptides. This pipeline was validated via screening of the cyclotide-rich botanical species Viola odorata and identification of the known antimicrobial and anticancer cyclotide cycloviolacin O2. Herein we present and validate novel bioactivities of the anthelmintic V. odorata cyclotide, cycloviolacin O8 (cyO8), including micromolar anticancer activity against PC-3 prostate, MDA-MB-231 breast, and OVCAR-3 ovarian cancer cell lines and antifungal activity against the agricultural pathogen Fusarium graminearum. A reduction/alkylation strategy in tandem with PepSAVI-MS analysis also revealed several previously uncharacterized putatively bioactive cyclotides. Downstream implementation of ultraviolet photodissociation (UVPD) tandem mass spectrometry is demonstrated for cyO8 as a method to address traditionally difficult-to-sequence cyclotide species. This work emphasizes the therapeutic and agricultural potential of natural product bioactive peptides and the necessity of developing robust analytical tools to deconvolute nature's complexity.


Asunto(s)
Antifúngicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Ciclotidas/farmacología , Fusarium/efectos de los fármacos , Viola/química , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclotidas/química , Ciclotidas/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos/efectos de los fármacos , Humanos , Estructura Molecular , Biblioteca de Péptidos , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
20.
J Phys Chem Lett ; 8(6): 1283-1289, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28234006

RESUMEN

We report the first results of ultraviolet photodissociation (UVPD) mass spectrometry of trapped monolayer-protected cluster (MPC) ions generated by electrospray ionization. Gold clusters Au25(pMBA)18 and Au36(pMBA)24 (pMBA = para-mercaptobenzoic acid) were analyzed in both the positive and negative modes. Whereas activation methods including collisional- and electron-based methods produced relatively few fragment ions, even a single ultraviolet pulse (at λ = 193 nm) caused extensive fragmentation of the positively charged clusters. Upon photoactivation using a low number of laser pulses, the staple motifs of both clusters were cleaved and stripped of the protecting ligand portions without removal of any contained gold atoms. This striking process involved Au-S and C-S bond cleavages via a pathway made possible by 6.4 eV photon absorption. Monomer evaporation (neutral gold atom loss) occurred upon exposure to multiple pulses, resulting in a size series of bare gold-cluster ions. All tandem mass spectrometric methods produced the singly charged ring tetramer ion, [Au4(pMBA)4 + Na]+, for each cluster.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA