Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049249

RESUMEN

Sodium-promoted monoclinic zirconia supported ruthenium catalysts were tested for CO2 hydrogenation at 20 bar and a H2:CO2 ratio of 3:1. Although increasing sodium promotion, from 2.5% to 5% by weight, slightly decreased CO2 conversion (14% to 10%), it doubled the selectivity to both CO (~36% to ~71%) and chain growth products (~4% to ~8%) remarkably and reduced the methane selectivity by two-thirds (~60% to ~21%). For CO2 hydrogenation during in situ DRIFTS under atmospheric pressure, it was revealed that Na increases the catalyst basicity and suppresses the reactivity of Ru sites. Higher basicity facilitates CO2 adsorption, weakens the C-H bond of the formate intermediate promoting CO formation, and inhibits methanation occurring on ruthenium nanoparticle surfaces. The suppression of excessive hydrogenation increases the chain growth probability. Decelerated reduction during H2-TPR/TPR-MS and H2-TPR-EXAFS/XANES at the K-edge of ruthenium indicates that sodium is in contact with ruthenium. A comparison of the XANES spectra of unpromoted and Na-promoted catalysts after H2 reduction showed no evidence of a promoting effect involving electron charge transfer.

2.
Nanomaterials (Basel) ; 11(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34578548

RESUMEN

The ethanol steam reforming reaction (ESR) was investigated on unpromoted and potassium- and rubidium-promoted monoclinic zirconia-supported platinum (Pt/m-ZrO2) catalysts. Evidence from in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization indicates that ethanol dissociates to ethoxy species, which undergo oxidative dehydrogenation to acetate followed by acetate decomposition. The acetate decomposition pathway depends on catalyst composition. The decarboxylation pathway tends to produce higher overall hydrogen selectivity and is the most favored route at high alkali loading (2.55 wt.% K and higher or 4.25 wt.% Rb and higher). On the other hand, decarbonylation is a significant route for the undoped catalyst or when a low alkali loading (e.g., 0.85% K or 0.93% Rb) is used, thus lowering the overall H2 selectivity of the process. Results of in situ DRIFTS and the temperature-programmed reaction of ESR show that alkali doping promotes forward acetate decomposition while exposed metallic sites tend to facilitate decarbonylation. In previous work, 1.8 wt.% Na was found to hinder decarbonylation completely. Due to the fact that 1.8 wt.% Na is atomically equivalent to 3.1 wt.% K and 6.7 wt.% Rb, the results show that less K (2.55% K) or Rb (4.25% Rb) is needed to suppress decarbonylation; that is, more basic cations are more efficient promoters for improving the overall hydrogen selectivity of the ESR process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA