Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nanotechnology ; 30(36): 364002, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31121565

RESUMEN

Medical training simulations that utilize 3D-printed, patient-specific tissue models improve practitioner and patient understanding of individualized procedures and capacitate pre-operative, patient-specific rehearsals. The impact of these novel constructs in medical training and pre-procedure rehearsals has been limited, however, by the lack of effectively embedded sensors that detect the location, direction, and amplitude of strains applied by the practitioner on the simulated structures. The monolithic fabrication of strain sensors embedded into lifelike tissue models with customizable orientation and placement could address this limitation. The demonstration of 3D printing of an ionogel as a stretchable, piezoresistive strain sensor embedded in an elastomer is presented as a proof-of-concept of this integrated fabrication for the first time. The significant hysteresis and drift inherent to solid-phase piezoresistive composites and the dimensional instability of low-hysteresis piezoresistive liquids inspired the adoption of a 3D-printable piezoresistive ionogel composed of reduced graphene oxide and an ionic liquid. The shear-thinning rheology of the ionogel obviates the need to fabricate additional structures that define or contain the geometry of the sensing channel. Sensors are printed on and subsequently encapsulated in polydimethylsiloxane (PDMS), a thermoset elastomer commonly used for analog tissue models, to demonstrate seamless fabrication. Strain sensors demonstrate geometry- and strain-dependent gauge factors of 0.54-2.41, a high dynamic strain range of 350% that surpasses the failure strain of most dermal and viscus tissue, low hysteresis (<3.5% degree of hysteresis up to 300% strain) and baseline drift, a single-value response, and excellent fatigue stability (5000 stretching cycles). In addition, we fabricate sensors with stencil-printed silver/PDMS electrodes in place of wires to highlight the potential of seamless integration with printed electrodes. The compositional tunability of ionic liquid/graphene-based composites and the shear-thinning rheology of this class of conductive gels endows an expansive combination of customized sensor geometry and performance that can be tailored to patient-specific, high-fidelity, monolithically fabricated tissue models.

2.
J Am Chem Soc ; 133(39): 15753-61, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21848336

RESUMEN

Ammonium thiocyanate (NH(4)SCN) is introduced to exchange the long, insulating ligands used in colloidal nanocrystal (NC) synthesis. The short, air-stable, environmentally benign thiocyanate ligand electrostatically stabilizes a variety of semiconductor and metallic NCs in polar solvents, allowing solution-based deposition of NCs into thin-film NC solids. NH(4)SCN is also effective in replacing ligands on NCs after their assembly into the solid state. The spectroscopic properties of this ligand provide unprecedented insight into the chemical and electronic nature of the surface of the NCs. Spectra indicate that the thiocyanate binds to metal sites on the NC surface and is sensitive to atom type and NC surface charge. The short, thiocyanate ligand gives rise to significantly enhanced electronic coupling between NCs as evidenced by large bathochromic shifts in the absorption spectra of CdSe and CdTe NC thin films and by conductivities as high as (2 ± 0.7) × 10(3) Ω(-1) cm(-1) for Au NC thin films deposited from solution. NH(4)SCN treatment of PbTe NC films increases the conductivity by 10(13), allowing the first Hall measurements of nonsintered NC solids, with Hall effect mobilities of 2.8 ± 0.7 cm(2)/(V·s). Thiocyanate-capped CdSe NC thin films form photodetectors exhibiting sensitive photoconductivity of 10(-5) Ω(-1) cm(-1) under 30 mW/cm(2) of 488 nm illumination with I(photo)/I(dark) > 10(3) and form n-channel thin-film transistors with electron mobilities of 1.5 ± 0.7 cm(2)/(V·s), a current modulation of >10(6), and a subthreshold swing of 0.73 V/decade.

3.
BMC Biotechnol ; 10: 47, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20573258

RESUMEN

BACKGROUND: MicroRNAs (miRs) are non-coding RNA molecules involved in post-transcriptional regulation, with diverse functions in tissue development, differentiation, cell proliferation and apoptosis. miRs may be less prone to degradation during formalin fixation, facilitating miR expression studies in formalin-fixed paraffin-embedded (FFPE) tissue. RESULTS: Our study demonstrates that the TaqMan Human MicroRNA Array v1.0 (Early Access) platform is suitable for miR expression analysis in FFPE tissue with a high reproducibility (correlation coefficients of 0.95 between duplicates, p < 0.00001) and outlines the optimal performance conditions of this platform using clinical FFPE samples. We also outline a method of data analysis looking at differences in miR abundance between FFPE and fresh-frozen samples. By dividing the profiled miR into abundance strata of high (Ct<30), medium (30 < or = Ct < or = 35), and low (Ct>35), we show that reproducibility between technical replicates, equivalent dilutions, and FFPE vs. frozen samples is best in the high abundance stratum. We also demonstrate that the miR expression profiles of FFPE samples are comparable to those of fresh-frozen samples, with a correlation of up to 0.87 (p < 0.001), when examining all miRs, regardless of RNA extraction method used. Examining correlation coefficients between FFPE and fresh-frozen samples in terms of miR abundance reveals correlation coefficients of up to 0.32 (low abundance), 0.70 (medium abundance) and up to 0.97 (high abundance). CONCLUSION: Our study thus demonstrates the utility, reproducibility, and optimization steps needed in miR expression studies using FFPE samples on a high-throughput quantitative PCR-based miR platform, opening up a realm of research possibilities for retrospective studies.


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/análisis , Reacción en Cadena de la Polimerasa/métodos , Formaldehído , Humanos , Microfluídica , Adhesión en Parafina , Análisis de Regresión , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA