Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 21(1): 9, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31918677

RESUMEN

BACKGROUND: Recent technological developments have enabled the measurement of a plethora of biomolecular data from various omics domains, and research is ongoing on statistical methods to leverage these omics data to better model and understand biological pathways and genetic architectures of complex phenotypes. Current reviews report that the simultaneous analysis of multiple (i.e. three or more) high dimensional omics data sources is still challenging and suitable statistical methods are unavailable. Often mentioned challenges are the lack of accounting for the hierarchical structure between omics domains and the difficulty of interpretation of genomewide results. This study is motivated to address these challenges. We propose multiset sparse Partial Least Squares path modeling (msPLS), a generalized penalized form of Partial Least Squares path modeling, for the simultaneous modeling of biological pathways across multiple omics domains. msPLS simultaneously models the effect of multiple molecular markers, from multiple omics domains, on the variation of multiple phenotypic variables, while accounting for the relationships between data sources, and provides sparse results. The sparsity in the model helps to provide interpretable results from analyses of hundreds of thousands of biomolecular variables. RESULTS: With simulation studies, we quantified the ability of msPLS to discover associated variables among high dimensional data sources. Furthermore, we analysed high dimensional omics datasets to explore biological pathways associated with Marfan syndrome and with Chronic Lymphocytic Leukaemia. Additionally, we compared the results of msPLS to the results of Multi-Omics Factor Analysis (MOFA), which is an alternative method to analyse this type of data. CONCLUSIONS: msPLS is an multiset multivariate method for the integrative analysis of multiple high dimensional omics data sources. It accounts for the relationship between multiple high dimensional data sources while it provides interpretable results through its sparse solutions. The biomarkers found by msPLS in the omics datasets can be interpreted in terms of biological pathways associated with the pathophysiology of Marfan syndrome and of Chronic Lymphocytic Leukaemia. Additionally, msPLS outperforms MOFA in terms of variation explained in the chronic lymphocytic leukaemia dataset while it identifies the two most important clinical markers for Chronic Lymphocytic Leukaemia AVAILABILITY: http://uva.csala.me/mspls.https://github.com/acsala/2018_msPLS.


Asunto(s)
Interfaz Usuario-Computador , Genómica/métodos , Humanos , Análisis de los Mínimos Cuadrados , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patología , Análisis Multivariante , Proteómica/métodos
2.
Biom J ; 61(2): 406-423, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30506971

RESUMEN

Redundancy Analysis (RDA) is a well-known method used to describe the directional relationship between related data sets. Recently, we proposed sparse Redundancy Analysis (sRDA) for high-dimensional genomic data analysis to find explanatory variables that explain the most variance of the response variables. As more and more biomolecular data become available from different biological levels, such as genotypic and phenotypic data from different omics domains, a natural research direction is to apply an integrated analysis approach in order to explore the underlying biological mechanism of certain phenotypes of the given organism. We show that the multiset sparse Redundancy Analysis (multi-sRDA) framework is a prominent candidate for high-dimensional omics data analysis since it accounts for the directional information transfer between omics sets, and, through its sparse solutions, the interpretability of the result is improved. In this paper, we also describe a software implementation for multi-sRDA, based on the Partial Least Squares Path Modeling algorithm. We test our method through simulation and real omics data analysis with data sets of 364,134 methylation markers, 18,424 gene expression markers, and 47 cytokine markers measured on 37 patients with Marfan syndrome.


Asunto(s)
Bioestadística/métodos , Genómica , Algoritmos , Citocinas/metabolismo , Metilación de ADN , Perfilación de la Expresión Génica
3.
Bioinformatics ; 33(20): 3228-3234, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28605402

RESUMEN

MOTIVATION: Recent technological developments have enabled the possibility of genetic and genomic integrated data analysis approaches, where multiple omics datasets from various biological levels are combined and used to describe (disease) phenotypic variations. The main goal is to explain and ultimately predict phenotypic variations by understanding their genetic basis and the interaction of the associated genetic factors. Therefore, understanding the underlying genetic mechanisms of phenotypic variations is an ever increasing research interest in biomedical sciences. In many situations, we have a set of variables that can be considered to be the outcome variables and a set that can be considered to be explanatory variables. Redundancy analysis (RDA) is an analytic method to deal with this type of directionality. Unfortunately, current implementations of RDA cannot deal optimally with the high dimensionality of omics data (p≫n). The existing theoretical framework, based on Ridge penalization, is suboptimal, since it includes all variables in the analysis. As a solution, we propose to use Elastic Net penalization in an iterative RDA framework to obtain a sparse solution. RESULTS: We proposed sparse redundancy analysis (sRDA) for high dimensional omics data analysis. We conducted simulation studies with our software implementation of sRDA to assess the reliability of sRDA. Both the analysis of simulated data, and the analysis of 485 512 methylation markers and 18,424 gene-expression values measured in a set of 55 patients with Marfan syndrome show that sRDA is able to deal with the usual high dimensionality of omics data. AVAILABILITY AND IMPLEMENTATION: http://uva.csala.me/rda. CONTACT: a.csala@amc.uva.nl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma Humano , Genómica/métodos , Programas Informáticos , Metilación de ADN , Humanos , Síndrome de Marfan/genética , Reproducibilidad de los Resultados , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA