Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Biol ; 20(1): e3001526, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085235

RESUMEN

The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1ß (IL-1ß), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.


Asunto(s)
Edema Encefálico/genética , Lesiones Encefálicas/genética , Microglía/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Accidente Cerebrovascular/genética , Animales , Edema Encefálico/inducido químicamente , Edema Encefálico/metabolismo , Edema Encefálico/patología , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Bumetanida/farmacología , Embrión de Mamíferos , Regulación de la Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación , Inyecciones Intraventriculares , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Fenotipo , Miembro 2 de la Familia de Transportadores de Soluto 12/deficiencia , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
2.
Glia ; 72(5): 833-856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37964690

RESUMEN

Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Microglía/metabolismo , Isquemia Encefálica/patología , Isquemia/metabolismo , Accidente Cerebrovascular/metabolismo , Neuronas/patología , Infarto de la Arteria Cerebral Media/metabolismo
3.
Acta Neuropathol ; 136(3): 461-482, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30027450

RESUMEN

Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours. Selective elimination of microglia results in a marked increase in the spread of infection and egress of viral particles into the brain parenchyma, which are associated with diverse neurological symptoms. Microglia recruitment and clearance of infected cells require cell-autonomous P2Y12 signalling in microglia, triggered by nucleotides released from affected neurons. In turn, we identify microglia as key contributors to monocyte recruitment into the inflamed brain, which process is largely independent of P2Y12. P2Y12-positive microglia are also recruited to infected neurons in the human brain during viral encephalitis and both microglial responses and leukocyte numbers correlate with the severity of infection. Thus, our data identify a key role for microglial P2Y12 in defence against neurotropic viruses, whilst P2Y12-independent actions of microglia may contribute to neuroinflammation by facilitating monocyte recruitment to the sites of infection.


Asunto(s)
Encéfalo/metabolismo , Infecciones por Herpesviridae/metabolismo , Microglía/metabolismo , Monocitos/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Transducción de Señal/fisiología , Animales , Encéfalo/virología , Ratones , Microglía/virología , Neuronas/metabolismo , Neuronas/virología
4.
J Physiol ; 594(13): 3775-90, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27028801

RESUMEN

KEY POINTS: The median raphe is a key subcortical modulatory centre involved in several brain functions, such as regulation of the sleep-wake cycle, emotions and memory storage. A large proportion of median raphe neurones are glutamatergic and implement a radically different mode of communication compared to serotonergic cells, although their in vivo activity is unknown. We provide the first description of the in vivo, brain state-dependent firing properties of median raphe glutamatergic neurones identified by immunopositivity for the vesicular glutamate transporter type 3 (VGluT3) and serotonin (5-HT). Glutamatergic populations (VGluT3+/5-HT- and VGluT3+/5-HT+) were compared with the purely serotonergic (VGluT3-/5-HT+ and VGluT3-/5-HT-) neurones. VGluT3+/5-HT+ neurones fired similar to VGluT3-/5-HT+ cells, whereas they significantly diverged from the VGluT3+/5-HT- population. Activity of the latter subgroup resembled the spiking of VGluT3-/5-HT- cells, except for their diverging response to sensory stimulation. The VGluT3+ population of the median raphe may broadcast rapidly varying signals on top of a state-dependent, tonic modulation. ABSTRACT: Subcortical modulation is crucial for information processing in the cerebral cortex. Besides the canonical neuromodulators, glutamate has recently been identified as a key cotransmitter of numerous monoaminergic projections. In the median raphe, a pure glutamatergic neurone population projecting to limbic areas was also discovered with a possibly novel, yet undetermined function. In the present study, we report the first functional description of the vesicular glutamate transporter type 3 (VGluT3)-expressing median raphe neurones. Because there is no appropriate genetic marker for the separation of serotonergic (5-HT+) and non-serotonergic (5-HT-) VGluT3+ neurones, we utilized immunohistochemistry after recording and juxtacellular labelling in anaesthetized rats. VGluT3+/5-HT- neurones fired faster, more variably and were permanently activated during sensory stimulation, as opposed to the transient response of the slow firing VGluT3-/5-HT+ subgroup. VGluT3+/5-HT- cells were also more active during hippocampal theta. In addition, the VGluT3-/5-HT- population, comprising putative GABAergic cells, resembled the firing of VGluT3+/5-HT- neurones but without any significant reaction to the sensory stimulus. Interestingly, the VGluT3+/5-HT+ group, spiking slower than the VGluT3+/5-HT- population, exhibited a mixed response (i.e. the initial transient activation was followed by a sustained elevation of firing). Phase coupling to hippocampal and prefrontal slow oscillations was found in VGluT3+/5-HT- neurones, also differentiating them from the VGluT3+/5-HT+ subpopulation. Taken together, glutamatergic neurones in the median raphe may implement multiple, highly divergent forms of modulation in parallel: a slow, tonic mode interrupted by sensory-evoked rapid transients, as well as a fast one capable of conveying complex patterns influenced by sensory inputs.


Asunto(s)
Neuronas/fisiología , Núcleos del Rafe/fisiología , Serotonina/fisiología , Proteínas de Transporte Vesicular de Glutamato/fisiología , Animales , Hipocampo/fisiología , Masculino , Corteza Prefrontal/fisiología , Ratas Wistar
5.
Adv Neurobiol ; 37: 135-149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39207690

RESUMEN

Microglia represent the main immunocompetent cell type in the parenchyma of the brain and the spinal cord, with roles extending way beyond their immune functions. While emerging data show the pivotal role of microglia in brain development, brain health and brain diseases, the exact mechanisms through which microglia contribute to complex neuroimmune interactions are still largely unclear. Understanding the communication between microglia and other cells represents an important cornerstone of these interactions, which may provide novel opportunities for therapeutic interventions in neurological or psychiatric disorders. As such, in line with studying the effects of the numerous soluble mediators that influence neuroimmune processes, attention on physical interactions between microglia and other cells in the CNS has increased substantially in recent years. In this chapter, we briefly summarize the latest literature on "microglial contactomics" and its functional implications in health and disease.


Asunto(s)
Comunicación Celular , Microglía , Microglía/metabolismo , Humanos , Comunicación Celular/fisiología , Encéfalo/metabolismo , Animales , Neuroinmunomodulación
6.
Nat Commun ; 15(1): 5402, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926390

RESUMEN

Acute brain slices represent a workhorse model for studying the central nervous system (CNS) from nanoscale events to complex circuits. While slice preparation inherently involves tissue damage, it is unclear how microglia, the main immune cells and damage sensors of the CNS react to this injury and shape neuronal activity ex vivo. To this end, we investigated microglial phenotypes and contribution to network organization and functioning in acute brain slices. We reveal time-dependent microglial phenotype changes influenced by complex extracellular ATP dynamics through P2Y12R and CX3CR1 signalling, which is sustained for hours in ex vivo mouse brain slices. Downregulation of P2Y12R and changes of microglia-neuron interactions occur in line with alterations in the number of excitatory and inhibitory synapses over time. Importantly, functional microglia modulate synapse sprouting, while microglial dysfunction results in markedly impaired ripple activity both ex vivo and in vivo. Collectively, our data suggest that microglia are modulators of complex neuronal networks with important roles to maintain neuronal network integrity and activity. We suggest that slice preparation can be used to model time-dependent changes of microglia-neuron interactions to reveal how microglia shape neuronal circuits in physiological and pathological conditions.


Asunto(s)
Adenosina Trifosfato , Encéfalo , Receptor 1 de Quimiocinas CX3C , Microglía , Neuronas , Receptores Purinérgicos P2Y12 , Sinapsis , Animales , Microglía/metabolismo , Adenosina Trifosfato/metabolismo , Ratones , Neuronas/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptores Purinérgicos P2Y12/metabolismo , Receptores Purinérgicos P2Y12/genética , Encéfalo/metabolismo , Sinapsis/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Masculino , Transducción de Señal
7.
Neuron ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39059388

RESUMEN

Microglia are crucial for maintaining brain health and neuron function. Here, we report that microglia establish connections with neurons using tunneling nanotubes (TNTs) in both physiological and pathological conditions. These TNTs facilitate the rapid exchange of organelles, vesicles, and proteins. In neurodegenerative diseases like Parkinson's and Alzheimer's disease, toxic aggregates of alpha-synuclein (α-syn) and tau accumulate within neurons. Our research demonstrates that microglia use TNTs to extract neurons from these aggregates, restoring neuronal health. Additionally, microglia share their healthy mitochondria with burdened neurons, reducing oxidative stress and normalizing gene expression. Disrupting mitochondrial function with antimycin A before TNT formation eliminates this neuroprotection. Moreover, co-culturing neurons with microglia and promoting TNT formation rescues suppressed neuronal activity caused by α-syn or tau aggregates. Notably, TNT-mediated aggregate transfer is compromised in microglia carrying Lrrk22(Gly2019Ser) or Trem2(T66M) and (R47H) mutations, suggesting a role in the pathology of these gene variants in neurodegenerative diseases.

8.
J Neurosci ; 31(16): 5893-904, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21508214

RESUMEN

GABAergic inhibition plays a central role in the control of pyramidal cell ensemble activities; thus, any signaling mechanism that regulates inhibition is able to fine-tune network patterns. Here, we provide evidence that the retrograde nitric oxide (NO)-cGMP cascade triggered by NMDA receptor (NMDAR) activation plays a role in the control of hippocampal GABAergic transmission in mice. GABAergic synapses express neuronal nitric oxide synthase (nNOS) postsynaptically and NO receptors (NO-sensitive guanylyl cyclase) in the presynaptic terminals. We hypothesized that--similar to glutamatergic synapses--the Ca(2+) transients required to activate nNOS were provided by NMDA receptor activation. Indeed, administration of 5 µm NMDA induced a robust nNOS-dependent cGMP production in GABAergic terminals, selectively in the CA1 and CA3c areas. Furthermore, using preembedding, postembedding, and SDS-digested freeze-fracture replica immunogold labeling, we provided quantitative immunocytochemical evidence that NMDAR subunits GluN1, GluN2A, and GluN2B were present in most somatic GABAergic synapses postsynaptically. These data indicate that NMDARs can modulate hippocampal GABAergic inhibition via NO-cGMP signaling in an activity-dependent manner and that this effect is subregion specific in the mouse hippocampus.


Asunto(s)
Hipocampo/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/fisiología , Animales , GMP Cíclico/metabolismo , Electrofisiología , Guanilato Ciclasa/metabolismo , Inmunohistoquímica , Ratones , Inhibición Neural/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Transmisión Sináptica/fisiología
9.
Cereb Cortex ; 21(9): 2065-74, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21282319

RESUMEN

Early γ-aminobutyric acid mediated (GABAergic) synaptic transmission and correlated neuronal activity are fundamental to network formation; however, their regulation during early postnatal development is poorly understood. Nitric oxide (NO) is an important retrograde messenger at glutamatergic synapses, and it was recently shown to play an important role also at GABAergic synapses in the adult brain. The subcellular localization and network effect of this signaling pathway during early development are so far unexplored, but its disruption at this early age is known to lead to profound morphological and functional alterations. Here, we provide functional evidence--using whole-cell recording--that NO signaling modulates not only glutamatergic but also GABAergic synaptic transmission in the mouse hippocampus during the early postnatal period. We identified the precise subcellular localization of key elements of the underlying molecular cascade using immunohistochemistry at the light--and electron microscopic levels. As predicted by these morpho-functional data, multineuron calcium imaging in acute slices revealed that this NO-signaling machinery is involved also in the control of synchronous network activity patterns. We suggest that the retrograde NO-signaling system is ideally suited to fulfill a general presynaptic regulatory role and may effectively fine-tune network activity during early postnatal development, while GABAergic transmission is still depolarizing.


Asunto(s)
Óxido Nítrico/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Animales , Calcio/fisiología , GMP Cíclico/biosíntesis , Fenómenos Electrofisiológicos , Técnica del Anticuerpo Fluorescente , Glutamato Descarboxilasa/fisiología , Ácido Glutámico/fisiología , Guanilato Ciclasa/fisiología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Inmunohistoquímica , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/fisiología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Guanilil Ciclasa Soluble , Ácido gamma-Aminobutírico/fisiología
10.
Cell Rep ; 40(12): 111369, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130488

RESUMEN

Microglia, the resident immune cells of the brain, play important roles during development. Although bi-directional communication between microglia and neuronal progenitors or immature neurons has been demonstrated, the main sites of interaction and the underlying mechanisms remain elusive. By using advanced methods, here we provide evidence that microglial processes form specialized contacts with the cell bodies of developing neurons throughout embryonic, early postnatal, and adult neurogenesis. These early developmental contacts are highly reminiscent of somatic purinergic junctions that are instrumental for microglia-neuron communication in the adult brain. The formation and maintenance of these junctions is regulated by functional microglial P2Y12 receptors, and deletion of P2Y12Rs disturbs proliferation of neuronal precursors and leads to aberrant cortical cytoarchitecture during development and in adulthood. We propose that early developmental formation of somatic purinergic junctions represents an important interface for microglia to monitor the status of immature neurons and control neurodevelopment.


Asunto(s)
Microglía , Neurogénesis , Adulto , Encéfalo , Humanos , Microglía/fisiología , Neuronas/fisiología
11.
J Exp Med ; 219(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35201268

RESUMEN

Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.


Asunto(s)
Circulación Cerebrovascular/fisiología , Microglía/fisiología , Acoplamiento Neurovascular/fisiología , Receptores Purinérgicos/fisiología , Adulto , Anciano , Animales , Encéfalo/fisiología , Señalización del Calcio/fisiología , Enfermedades de las Arterias Carótidas/fisiopatología , Potenciales Evocados/fisiología , Femenino , Humanos , Hipercapnia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Purinérgicos P2Y12/fisiología , Vasodilatación/fisiología , Vibrisas/inervación
12.
Neuron ; 109(2): 222-240, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33271068

RESUMEN

The functional contribution of microglia to normal brain development, healthy brain function, and neurological disorders is increasingly recognized. However, until recently, the nature of intercellular interactions mediating these effects remained largely unclear. Recent findings show microglia establishing direct contact with different compartments of neurons. Although communication between microglia and neurons involves intermediate cells and soluble factors, direct membrane contacts enable a more precisely regulated, dynamic, and highly effective form of interaction for fine-tuning neuronal responses and fate. Here, we summarize the known ultrastructural, molecular, and functional features of direct microglia-neuron interactions and their roles in brain disease.


Asunto(s)
Encéfalo/metabolismo , Comunicación Celular/fisiología , Microglía/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/patología , Encefalopatías/metabolismo , Encefalopatías/patología , Humanos , Microglía/patología , Neuronas/patología
13.
J Extracell Vesicles ; 10(11): e12140, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34520123

RESUMEN

In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium-sized nascent EVs of THP1 cells as well as of Optiprep-purified platelets, and incubated them in EV-depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein-coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen α-chain, immunoglobulin heavy constant γ2 and γ4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF-α, IL-6, CD83, CD86 and HLA-DR of human monocyte-derived dendritic cells, EV-free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein 'contamination' of EV preparations and may add a new perspective to EV research.


Asunto(s)
Vesículas Extracelulares/metabolismo , Espectrometría de Masas/métodos , Plasma/metabolismo , Corona de Proteínas/metabolismo , Femenino , Humanos , Masculino
14.
J Cereb Blood Flow Metab ; 40(1_suppl): S67-S80, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31987008

RESUMEN

Selective elimination of microglia from the brain was shown to dysregulate neuronal Ca2+ signaling and to reduce the incidence of spreading depolarization (SD) during cerebral ischemia. However, the mechanisms through which microglia interfere with SD remained unexplored. Here, we identify microglia as essential modulators of the induction and evolution of SD in the physiologically intact brain in vivo. Confocal- and super-resolution microscopy revealed that a series of SDs induced rapid morphological changes in microglia, facilitated microglial process recruitment to neurons and increased the density of P2Y12 receptors (P2Y12R) on recruited microglial processes. In line with this, depolarization and hyperpolarization during SD were microglia- and P2Y12R-dependent. An absence of microglia was associated with altered potassium uptake after SD and increased the number of c-fos-positive neurons, independently of P2Y12R. Thus, the presence of microglia is likely to be essential to maintain the electrical elicitation threshold and to support the full evolution of SD, conceivably by interfering with the extracellular potassium homeostasis of the brain through sustaining [K+]e re-uptake mechanisms.


Asunto(s)
Isquemia Encefálica/fisiopatología , Microglía/metabolismo , Potasio/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratones
15.
Science ; 367(6477): 528-537, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31831638

RESUMEN

Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.


Asunto(s)
Lesiones Encefálicas/inmunología , Encéfalo/inmunología , Uniones Intercelulares/inmunología , Microglía/inmunología , Neuronas/inmunología , Receptores Purinérgicos P2Y12/fisiología , Animales , Encéfalo/ultraestructura , Lesiones Encefálicas/patología , Calcio , Comunicación Celular/inmunología , Células HEK293 , Humanos , Ratones , Mitocondrias/inmunología , Canales de Potasio Shab/genética , Canales de Potasio Shab/fisiología , Transducción de Señal
16.
Neuroscience ; 405: 103-117, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29753862

RESUMEN

Microglia are the primary immune cells of the central nervous system. However, recent data indicate that microglia also contribute to diverse physiological and pathophysiological processes that extend beyond immune-related functions and there is a growing interest to understand the mechanisms through which microglia interact with other cells in the brain. In particular, the molecular processes that contribute to microglia-neuron communication in the healthy brain and their role in common brain diseases have been intensively studied during the last decade. In line with this, fate-mapping studies, genetic models and novel pharmacological approaches have revealed the origin of microglial progenitors, demonstrated the role of self-maintaining microglial populations during brain development or in adulthood, and identified the unexpectedly long lifespan of microglia that may profoundly change our view about senescence and age-related human diseases. Despite the exponentially increasing knowledge about microglia, the role of these cells in health and disease is still extremely controversial and the precise molecular targets for intervention are not well defined. This is in part due to the lack of microglia-specific manipulation approaches until very recently and to the high level of complexity of the interactions between microglia and other cells in the brain that occur at different temporal and spatial scales. In this review, we briefly summarize the known physiological roles of microglia-neuron interactions in brain homeostasis and attempt to outline some major directions and challenges of future microglia research.


Asunto(s)
Comunicación Celular/fisiología , Microglía/citología , Neuronas/citología , Animales , Encéfalo/citología , Encefalopatías/patología , Homeostasis , Humanos , Microglía/patología , Neuronas/patología , Sinapsis
17.
J Neurosci ; 27(30): 8101-11, 2007 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-17652601

RESUMEN

Nitric oxide (NO) plays an important role in synaptic plasticity as a retrograde messenger at glutamatergic synapses. Here we describe that, in hippocampal pyramidal cells, neuronal nitric oxide synthase (nNOS) is also associated with the postsynaptic active zones of GABAergic symmetrical synapses terminating on their somata, dendrites, and axon initial segments in both mice and rats. The NO receptor nitric oxide-sensitive guanylyl cyclase (NOsGC) is present in the brain in two functional subunit compositions: alpha1beta1 and alpha2beta1. The beta1 subunit is expressed in both pyramidal cells and interneurons in the hippocampus. Using immunohistochemistry and in situ hybridization methods, we describe that the alpha1 subunit is detectable only in interneurons, which are always positive for beta1 subunit as well; however, pyramidal cells are labeled only for beta1 and alpha2 subunits. With double-immunofluorescent staining, we also found that most cholecystokinin- and parvalbumin-positive and smaller proportion of the somatostatin- and nNOS-positive interneurons are alpha1 subunit positive. We also found that the alpha1 subunit is present in parvalbumin- and cholecystokinin-positive interneuron terminals that establish synapses on somata, dendrites, or axon initial segments. Our results demonstrate that NOsGC, composed of alpha1beta1 subunits, is selectively expressed in different types of interneurons and is present in their presynaptic GABAergic terminals, in which it may serve as a receptor for NO produced postsynaptically by nNOS in the very same synapse.


Asunto(s)
Hipocampo/fisiología , Óxido Nítrico/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Guanilato Ciclasa/genética , Guanilato Ciclasa/fisiología , Hipocampo/ultraestructura , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/genética , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/fisiología , ARN Mensajero/fisiología , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/fisiología , Guanilil Ciclasa Soluble , Sinapsis/genética , Sinapsis/ultraestructura , Ácido gamma-Aminobutírico/genética
18.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29383328

RESUMEN

Mitochondrial function in neurons is tightly linked with metabolic and signaling mechanisms that ultimately determine neuronal performance. The subcellular distribution of these organelles is dynamically regulated as they are directed to axonal release sites on demand, but whether mitochondrial internal ultrastructure and molecular properties would reflect the actual performance requirements in a synapse-specific manner, remains to be established. Here, we examined performance-determining ultrastructural features of presynaptic mitochondria in GABAergic and glutamatergic axons of mice and human. Using electron-tomography and super-resolution microscopy we found, that these features were coupled to synaptic strength: mitochondria in boutons with high synaptic activity exhibited an ultrastructure optimized for high rate metabolism and contained higher levels of the respiratory chain protein cytochrome-c (CytC) than mitochondria in boutons with lower activity. The strong, cell type-independent correlation between mitochondrial ultrastructure, molecular fingerprints and synaptic performance suggests that changes in synaptic activity could trigger ultrastructural plasticity of presynaptic mitochondria, likely to adjust their performance to the actual metabolic demand.


Asunto(s)
Axones/fisiología , Mitocondrias/ultraestructura , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Axones/ultraestructura , Citocromos c/metabolismo , Tomografía con Microscopio Electrónico , Femenino , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/ultraestructura , Ácido Glutámico/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía , Persona de Mediana Edad , Mitocondrias/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Sinapsis/ultraestructura
19.
Nat Commun ; 9(1): 2848, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30030438

RESUMEN

The basal forebrain cholinergic system is widely assumed to control cortical functions via non-synaptic transmission of a single neurotransmitter. Yet, we find that mouse hippocampal cholinergic terminals invariably establish GABAergic synapses, and their cholinergic vesicles dock at those synapses only. We demonstrate that these synapses do not co-release but co-transmit GABA and acetylcholine via different vesicles, whose release is triggered by distinct calcium channels. This co-transmission evokes composite postsynaptic potentials, which are mutually cross-regulated by presynaptic autoreceptors. Although postsynaptic cholinergic receptor distribution cannot be investigated, their response latencies suggest a focal, intra- and/or peri-synaptic localisation, while GABAA receptors are detected intra-synaptically. The GABAergic component alone effectively suppresses hippocampal sharp wave-ripples and epileptiform activity. Therefore, the differentially regulated GABAergic and cholinergic co-transmission suggests a hitherto unrecognised level of control over cortical states. This novel model of hippocampal cholinergic neurotransmission may lead to alternative pharmacotherapies after cholinergic deinnervation seen in neurodegenerative disorders.


Asunto(s)
Acetilcolina/fisiología , Hipocampo/fisiología , Receptores de GABA-A/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Calcio/fisiología , Dendritas/fisiología , Femenino , Imagenología Tridimensional , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/fisiopatología , Neurotransmisores/fisiología , Perfusión , Sinapsis/fisiología , Potenciales Sinápticos , Transmisión Sináptica , Vesículas Sinápticas/fisiología
20.
Front Behav Neurosci ; 12: 163, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30116182

RESUMEN

Serotonergic mechanisms hosted by raphe nuclei have important roles in affiliative and agonistic behaviors but the separate roles of the two nuclei are poorly understood. Here we studied the roles of the dorsal (DR) and median raphe region (MRR) in aggression by optogenetically stimulating the two nuclei. Mice received three 3 min-long stimulations, which were separated by non-stimulation periods of 3 min. The stimulation of the MRR decreased aggression in a phasic-like manner. Effects were rapidly expressed during stimulations, and vanished similarly fast when stimulations were halted. No carryover effects were observed in the subsequent three trials performed at 2-day intervals. No effects on social behaviors were observed. By contrast, DR stimulation rapidly and tonically promoted social behaviors: effects were present during both the stimulation and non-stimulation periods of intermittent stimulations. Aggressive behaviors were marginally diminished by acute DR stimulations, but repeated stimulations administered over 8 days considerably decreased aggression even in the absence of concurrent stimulations, indicating the emergence of carryover effects. No such effects were observed in the case of social behaviors. We also investigated stimulation-induced neurotransmitter release in the prefrontal cortex, a major site of aggression control. MRR stimulation rapidly but transiently increased serotonin release, and induced a lasting increase in glutamate levels. DR stimulation had no effect on glutamate, but elicited a lasting increase of serotonin release. Prefrontal serotonin levels remained elevated for at least 2 h subsequent to DR stimulations. The stimulation of both nuclei increased GABA release rapidly and transiently. Thus, differential behavioral effects of the two raphe nuclei were associated with differences in their neurotransmission profiles. These findings reveal a surprisingly strong behavioral task division between the two raphe nuclei, which was associated with a nucleus-specific neurotransmitter release in the prefrontal cortex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA