Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stud Mycol ; 104: 1-85, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37351542

RESUMEN

Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.

2.
Clin Microbiol Infect ; 14(4): 393-7, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18190575

RESUMEN

The clinical importance of zygomycosis, an emerging and frequently fatal mycotic disease, has increased during recent years. This report describes an identification method based on PCR amplification and sequencing of the high-affinity iron permease 1 gene (FTR1). Primers and amplification protocols were established and tested for the identification of Rhizopus oryzae, Rhizopus microsporus var. rhizopodiformis, R. microsporus var. oligosporus, Rhizopus schipperae, Rhizopus niveus and Rhizopus stolonifer. Rhizomucor and Syncephalastrum could be identified at the genus level. PCR-restriction fragment length polymorphism analysis of the amplified gene fragment using AluI digestion distinguished three subgroups among the R. oryzae isolates.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas de Transporte de Membrana/genética , Mucorales/clasificación , Mucormicosis/microbiología , Técnicas de Tipificación Micológica , Análisis de Secuencia de ADN , Cartilla de ADN , ADN de Hongos/análisis , ADN de Hongos/aislamiento & purificación , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Proteínas Fúngicas/química , Humanos , Hierro/metabolismo , Proteínas de Transporte de Membrana/química , Datos de Secuencia Molecular , Mucorales/enzimología , Mucorales/genética , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , Rhizomucor/clasificación , Rhizomucor/genética , Rhizopus/clasificación , Rhizopus/genética
3.
Acta Biol Hung ; 56(3-4): 345-57, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16196209

RESUMEN

Different types of molecular markers are available for use in evolutionary and population studies of microscopic fungi. These approaches have proved their merits and have been successfully applied to a wide range of fungal species belonging in the Ascomycetes and Basidiomycetes. Species in the class Zygomycetes have been rather neglected from this aspect. This review discusses the information available from investigations of the genotypic variability in this group of fungi.


Asunto(s)
Hongos/genética , Variación Genética , Electroforesis en Gel de Campo Pulsado , Marcadores Genéticos , Genotipo , Isoenzimas/análisis , Isoenzimas/genética , Polimorfismo de Longitud del Fragmento de Restricción , Técnica del ADN Polimorfo Amplificado Aleatorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA