Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Epilepsia ; 65(3): 779-791, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088023

RESUMEN

OBJECTIVE: Epilepsy with eyelid myoclonia (EEM) spectrum is a generalized form of epilepsy characterized by eyelid myoclonia with or without absences, eye closure-induced seizures with electroencephalographic paroxysms, and photosensitivity. Based on the specific clinical features, age at onset, and familial occurrence, a genetic cause has been postulated. Pathogenic variants in CHD2, SYNGAP1, NEXMIF, RORB, and GABRA1 have been reported in individuals with photosensitivity and eyelid myoclonia, but whether other genes are also involved, or a single gene is uniquely linked with EEM, or its subtypes, is not yet known. We aimed to dissect the genetic etiology of EEM. METHODS: We studied a cohort of 105 individuals by using whole exome sequencing. Individuals were divided into two groups: EEM- (isolated EEM) and EEM+ (EEM accompanied by intellectual disability [ID] or any other neurodevelopmental/psychiatric disorder). RESULTS: We identified nine variants classified as pathogenic/likely pathogenic in the entire cohort (8.57%); among these, eight (five in CHD2, one in NEXMIF, one in SYNGAP1, and one in TRIM8) were found in the EEM+ subcohort (28.57%). Only one variant (IFIH1) was found in the EEM- subcohort (1.29%); however, because the phenotype of the proband did not fit with published data, additional evidence is needed before considering IFIH1 variants and EEM- an established association. Burden analysis did not identify any single burdened gene or gene set. SIGNIFICANCE: Our results suggest that for EEM, as for many other epilepsies, the identification of a genetic cause is more likely with comorbid ID and/or other neurodevelopmental disorders. Pathogenic variants were mostly found in CHD2, and the association of CHD2 with EEM+ can now be considered a reasonable gene-disease association. We provide further evidence to strengthen the association of EEM+ with NEXMIF and SYNGAP1. Possible new associations between EEM+ and TRIM8, and EEM- and IFIH1, are also reported. Although we provide robust evidence for gene variants associated with EEM+, the core genetic etiology of EEM- remains to be elucidated.


Asunto(s)
Epilepsia Generalizada , Epilepsia Refleja , Mioclonía , Humanos , Secuenciación del Exoma , Helicasa Inducida por Interferón IFIH1/genética , Epilepsia Refleja/genética , Electroencefalografía , Párpados , Proteínas Portadoras/genética , Proteínas del Tejido Nervioso/genética
2.
Epilepsia ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953796

RESUMEN

OBJECTIVE: DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS: Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS: DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE: We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.

3.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612920

RESUMEN

X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype-phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance.


Asunto(s)
Epilepsia , Espasmos Infantiles , Femenino , Humanos , Genes Ligados a X , Epigénesis Genética , Genes cdc , Epilepsia/genética , Receptor de Prorenina , Protocadherinas , Factores de Intercambio de Guanina Nucleótido , Factores de Intercambio de Guanina Nucleótido Rho , N-Acetilglucosaminiltransferasas
4.
Clin Genet ; 104(3): 371-376, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37191084

RESUMEN

NAA20 is the catalytic subunit of the NatB complex, which is responsible for N-terminal acetylation of approximately 20% of the human proteome. Recently, pathogenic biallelic variants in NAA20 were associated with a novel neurodevelopmental disorder in five individuals with limited clinical information. We report two sisters harboring compound heterozygous variant (c.100C>T (p.Gln34Ter) and c.11T>C p.(Leu4Pro)) in the NAA20 gene, identified by exome sequencing. In vitro studies showed that the missense variant p.Leu4Pro resulted in a reduction of NAA20 catalytic activity due to weak coupling with the NatB auxiliary subunit. In addition, unpublished data of the previous families were reported, outlining the core phenotype of the NAA20-related disorder mostly characterized by cognitive impairment, microcephaly, ataxia, brain malformations, dysmorphism and variable occurrence of cardiac defect and epilepsy. Remarkably, our two patients featured epilepsy onset in adolescence suggesting this may be a part of syndrome evolution. Functional studies are needed to better understand the complexity of NAA20 variants pathogenesis as well as of other genes linked to N-terminal acetylation.


Asunto(s)
Microcefalia , Malformaciones del Sistema Nervioso , Adolescente , Humanos , Dominio Catalítico , Microcefalia/genética , Síndrome , Fenotipo , Acetiltransferasa B N-Terminal/genética , Acetiltransferasa B N-Terminal/metabolismo
5.
Epilepsia ; 64 Suppl 1: S58-S63, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36947106

RESUMEN

Familial adult myoclonus epilepsy (FAME) is a genetic condition characterized by the occurrence of cortical tremor, myoclonus, and epilepsy. To date, there is neither a curative nor a preventive treatment for FAME. Clinical management is essentially symptomatic and based on antiseizure medications (ASMs). The choice of the correct therapeutic option is limited to ASMs that have both an antiseizure and an antimyoclonic effect, such as valproate, levetiracetam, benzodiazepines, and perampanel. However, these medications control seizures well while having a limited effect on myoclonus and cortical tremor. In addition, many ASMs, including sodium channel blockers and gabapentin, are contraindicated in this condition. The ideal therapeutic option would be a precision treatment able to revert the genetic defect underlying it. Nevertheless, this does not seem to be an option that will be available soon.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Mioclonía , Adulto , Humanos , Mioclonía/tratamiento farmacológico , Temblor/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Ácido Valproico/uso terapéutico , Anticonvulsivantes/uso terapéutico
6.
Epilepsia ; 64(4): 866-874, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36734057

RESUMEN

OBJECTIVE: Perampanel, an antiseizure drug with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist properties, may have a targeted effect in genetic epilepsies with overwhelming glutamate receptor activation. Epilepsies with loss of γ-aminobutyric acid inhibition (e.g., SCN1A), overactive excitatory neurons (e.g., SCN2A, SCN8A), and variants in glutamate receptors (e.g., GRIN2A) hold special interest. We aimed to collect data from a large rare genetic epilepsy cohort treated with perampanel, to detect possible subgroups with high efficacy. METHODS: This multicenter project was based on the framework of NETRE (Network for Therapy in Rare Epilepsies), a web of pediatric neurologists treating rare epilepsies. Retrospective data from patients with genetic epilepsies treated with perampanel were collected. Outcome measures were responder rate (50% seizure reduction), and percentage of seizure reduction after 3 months of treatment. Subgroups of etiologies with high efficacy were identified. RESULTS: A total of 137 patients with 79 different etiologies, aged 2 months to 61 years (mean = 15.48 ± 9.9 years), were enrolled. The mean dosage was 6.45 ± 2.47 mg, and treatment period was 2.0 ± 1.78 years (1.5 months-8 years). Sixty-two patients (44.9%) were treated for >2 years. Ninety-eight patients (71%) were responders, and 93 (67.4%) chose to continue therapy. The mean reduction in seizure frequency was 56.61% ± 34.36%. Sixty patients (43.5%) sustained >75% reduction in seizure frequency, including 38 (27.5%) with >90% reduction in seizure frequency. The following genes showed high treatment efficacy: SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, POLG1, POLG2, and NEU1. Eleven of 17 (64.7%) patients with Dravet syndrome due to an SCN1A pathogenic variant were responders to perampanel treatment; 35.3% of them had >90% seizure reduction. Other etiologies remarkable for >90% reduction in seizures were GNAO1 and PIGA. Fourteen patients had a continuous spike and wave during sleep electroencephalographic pattern, and in six subjects perampanel reduced epileptiform activity. SIGNIFICANCE: Perampanel demonstrated high safety and efficacy in patients with rare genetic epilepsies, especially in SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, CDKL5, NEU1, and POLG, suggesting a targeted effect related to glutamate transmission.


Asunto(s)
Epilepsias Parciales , Epilepsia , Niño , Humanos , Epilepsias Parciales/tratamiento farmacológico , Anticonvulsivantes/efectos adversos , Estudios Retrospectivos , Resultado del Tratamiento , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/inducido químicamente , Convulsiones/tratamiento farmacológico , Piridonas/efectos adversos , Ácido Glutámico , Protocadherinas , Subunidades alfa de la Proteína de Unión al GTP Gi-Go
7.
Genet Med ; 24(12): 2464-2474, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36214804

RESUMEN

PURPOSE: KLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20. METHODS: Patients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed. RESULTS: We studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type ß-propeller domain of the KLHL20 protein, which shapes the substrate binding surface. CONCLUSION: Our findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Convulsiones Febriles , Niño , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación Missense/genética , Ubiquitina-Proteína Ligasas/genética
8.
Epilepsia Open ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837855

RESUMEN

Chromosomal abnormalities are associated with a broad spectrum of clinical manifestations, one of the more commonly observed of which is epilepsy. The frequency, severity, and type of epileptic seizures vary according to the macro- and microrearrangements present. Even within a single chromosomal anomaly, we most often deal with a phenotypic spectrum. The aim of the study was to look for chromosomal rearrangements with a characteristic electroencephalographic pattern. Only a few disorders have peculiar electroclinical abnormalities: 1p36, 4p16, 6q terminal or trisomy 12p, Angelman syndrome, inv dup 15, 15q13.3 deletions, ring 20, Down syndrome, or Xp11.22-11.23 duplication. We also reviewed studies on epileptic seizures and typical electroencephalographic patterns described in certain chromosomal rearrangements, focusing on the quest for potential electroclinical biomarkers. The comprehensive review concludes with clinical presentations of the most common micro and macro chromosomal rearrangements, such as 17q21.31 microdeletion, 6q terminal deletion, 15q inv dup syndrome, 2q24.4 deletion, Xp11.22-11.23 duplication, 15q13.3 microdeletion, 1p36 terminal deletion, 5q14.3 microdeletion, and Xq28 duplication. The papers reviewed did not identify any specific interictal electroencephalographic patterns that were unique and significant biomarkers for a given chromosomal microrearrangement. The types of seizures described varied, with both generalized and focal seizures of various morphologies being reported. Patients with chromosomal anomalies may also meet the criteria for specific epileptic syndromes such as Infantile Epilepsy Spasms Syndrome (IESS, West syndrome): 16p13.11, 15q13.3 and 17q21.31 microdeletions, 5q inv dup. syndrome; Dravet syndrome (2q24.4 deletion), Lennox-Gastaut syndrome (15q11 duplication. 1q13.3, 5q inv dup.); or Self-Limited Epilepsy with Autonomic Features (SeLEAS, Panayiotopoulos syndrome: terminal deletion of 6q.n), Self-Limited Epilepsy with Centrotemporal Spikes (SeLECT): fragile X syndrome. It is essential to better characterize groups of patients to more accurately define patterns of epilepsy and EEG abnormalities. This could lead to new treatment strategies. Future research is required to better understand epileptic syndromes and chromosomal rearrangements. PLAIN LANGUAGE SUMMARY: This paper presents EEG recording abnormalities in patients with various gene abnormalities that can cause epilepsy. The authors summarize these EEG variations based on a literature review to see if they occur frequently enough in other chromosomal abnormalities (in addition to those already known) to be a clue for further diagnosis.

9.
J Neurol Sci ; 462: 123067, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38823064

RESUMEN

BACKGROUND: Endovascular treatment (EVT) is the standard of care of ischaemic stroke due to occlusion of large vessels. Although EVT can significantly improve short- and long-term outcomes, functional dependence can persist despite the achievement of a successful recanalization. The evidence about the predictors of post-stroke epilepsy (PSE) in patients with stroke treated by EVT is limited. We aimed to evaluate the relationship between futile recanalization and the risk of PSE. METHODS: We retrospectively identified consecutive adults with first-ever ischaemic stroke of anterior circulation who were treated with EVT. Futile recanalization was defined as poor 3-month functional status (modified Rankin scale score ≥ 3) despite complete or near-complete recanalization. Study outcome was the occurrence of PSE during the follow-up. RESULTS: The study included 327 patients with anterior circulation ischaemic stroke treated with EVT. Futile recanalization occurred in 116 (35.5%) patients and 26 (8.0%) developed PSE during a median follow-up of 35 [interquartile range, 22.7-55.2] months. Futile recanalization was more common among patients who developed PSE compared to those who did not (76.9% versus 31.9%; p < 0.001). Futile recanalization [hazard ratio (HR) = 5.63, 95% confidence interval (CI): 1.88-16.84; p = 0.002], large artery atherosclerosis (HR = 3.48, 95% CI: 1.44-8.40; p = 0.006), cortical involvement (HR = 15.51, 95% CI: 2.06-116.98; p = 0.008), and acute symptomatic status epilepticus (HR = 14.40, 95% CI: 2.80-73.98; p = 0.001) increased the risk of PSE. CONCLUSIONS: Futile recanalization after EVT is associated with increased risk of PSE in patients with ischaemic stroke due to occlusion of large vessel of the anterior circulation.

10.
Cells ; 12(12)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37371086

RESUMEN

Familial adult myoclonus Epilepsy (FAME) is a non-coding repeat expansion disorder that has been reported under different acronyms and initially linked to four main loci: FAME1 (8q23.3-q24.1), FAME 2 (2p11.1-q12.1), FAME3 (5p15.31-p15.1), and FAME4 (3q26.32-3q28). To date, it is known that the genetic mechanism underlying FAME consists of the expansion of similar non-coding pentanucleotide repeats, TTTCA and TTTTA, in different genes. FAME is characterized by cortical tremor and myoclonus usually manifesting within the second decade of life, and infrequent seizures by the third or fourth decade. Cortical tremor is the core feature of FAME and is considered part of a spectrum of cortical myoclonus. Neurophysiological investigations as jerk-locked back averaging (JLBA) and corticomuscular coherence analysis, giant somatosensory evoked potentials (SEPs), and the presence of long-latency reflex I (or C reflex) at rest support cortical tremor as the result of the sensorimotor cortex hyperexcitability. Furthermore, the application of transcranial magnetic stimulation (TMS) protocols in FAME patients has recently shown that inhibitory circuits are also altered within the primary somatosensory cortex and the concomitant involvement of subcortical networks. Moreover, neuroimaging studies and postmortem autoptic studies indicate cerebellar alterations and abnormal functional connectivity between the cerebellum and cerebrum in FAME. Accordingly, the pathophysiological mechanism underlying FAME has been hypothesized to reside in decreased sensorimotor cortical inhibition through dysfunction of the cerebellar-thalamic-cortical loop, secondary to primary cerebellar pathology. In this context, the non-coding pentameric expansions have been proposed to cause cerebellar damage through an RNA-mediated toxicity mechanism. The elucidation of the underlying pathological mechanisms of FAME paves the way to novel therapeutic possibilities, such as RNA-targeting treatments, possibly applicable to other neurodegenerative non-coding disorders.


Asunto(s)
Epilepsias Mioclónicas , Mioclonía , Enfermedades Neurodegenerativas , Humanos , Adulto , Temblor/genética , Epilepsias Mioclónicas/genética , Reflejo
11.
Eur J Med Genet ; 65(12): 104659, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36334884

RESUMEN

Pathogenic variants in CENPJ have been first identified in consanguineous Pakistani families with Hereditary Primary Microcephaly type 6 (MCPH6). In addition to primary microcephaly, the CENPJ-related phenotypic spectrum lately included also distinctive and peculiar 'bird-like' craniofacial dysmorphisms, intrauterine and/or postnatal growth retardation, and moderate to severe intellectual disability (ID). These features are also part of the clinical spectrum of Seckel syndrome (SCKL) a genetically heterogeneous neurodevelopmental condition caused by mutations in different genes involved in cell cycle progression. Among these, CENPJ is responsible for type 4 Seckel syndrome (SCKL4). The literature reports two individuals affected by SCKL4 suffering from seizures and other two individuals with other brain malformations in addition to microcephaly. However, neither epilepsy nor brain malformations are described in detail and genotype-phenotype information remains limited. We describe the first Caucasian affected with SCKL4 and harboring a novel, homozygous mutation in CENPJ. We detail the clinical and neuroradiological findings including structural focal epilepsy and a severe brain malformation (i.e., hydranencephaly) that was never associated with SCKL4 to date.


Asunto(s)
Enanismo , Hidranencefalia , Discapacidad Intelectual , Microcefalia , Humanos , Microcefalia/genética , Microcefalia/patología , Enanismo/genética , Facies , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación , Proteínas Asociadas a Microtúbulos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA