Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; : e202400391, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877657

RESUMEN

Interactions between the tumor-associated carbohydrate antigens of Mucin 1 (MUC1) and the carbohydrate-binding proteins, lectins, often lead to the creation of a pro-tumor microenvironment favoring tumor initiation, progression, metastasis, and immune evasion. Macrophage galactose binding lectin (MGL) is a C-type lectin receptor found on antigen-presenting cells that facilitates the uptake of carbohydrate antigens for antigen presentation, modulating the immune response homeostasis, autoimmunity, and cancer. Considering the crucial role of tumor-associated forms of MUC1 and MGL in tumor immunology, a thorough understanding of their binding interaction is essential for it to be exploited for cancer vaccine strategies. The synthesis of MUC1 glycopeptide models carrying a single or multiple Tn and/or sialyl-Tn antigen(s) is described. A novel approach for the sialyl-Tn threonine building block suitable for the solid phase peptide synthesis was developed. The thermodynamic profile of the binding interaction between the human MGL and MUC1 glycopeptide models was analyzed using isothermal titration calorimetry. The measured dissociation constants for the sialyl-Tn-bearing peptide epitopes were consistently lower compared to the Tn antigen and ranged from 10 µM for mono- to 100 nM for triglycosylated MUC1 peptide, respectively. All studied interactions, regardless of the glycan's site of attachment or density, exhibited enthalpy-driven thermodynamics.

2.
Semin Immunol ; 47: 101389, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31926647

RESUMEN

The transformation from normal to malignant phenotype in human cancers is associated with aberrant cell-surface glycosylation. It has frequently been reported that MUC1, the heavily glycosylated cell-surface mucin, is altered in both, expression and glycosylation pattern, in human carcinomas of the epithelium. The presence of incomplete or truncated glycan structures, often capped by sialic acid, commonly known as tumor-associated carbohydrate antigens (TACAs), play a key role in tumor initiation, progression, and metastasis. Accumulating evidence suggests that expression of TACAs is associated with tumor escape from immune defenses. In this report, we will give an overview of the oncogenic functions of MUC1 that are exerted through TACA interactions with endogenous carbohydrate-binding proteins (lectins). These interactions often lead to creation of a pro-tumor microenvironment, favoring tumor progression and metastasis, and tumor evasion. In addition, we will describe current efforts in the design of cancer vaccines with special emphasis on synthetic MUC1 glycopeptide vaccines. Analysis of the key factors that govern structure-based design of immunogenic MUC1 glycopeptide epitopes are described. The role of TACA type, position, and density on observed humoral and cellular immune responses is evaluated.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Vacunas contra el Cáncer/inmunología , Mucina-1/inmunología , Polisacáridos/inmunología , Vacunología , Adyuvantes Inmunológicos , Animales , Antígenos de Neoplasias/química , Antígenos de Carbohidratos Asociados a Tumores/química , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/uso terapéutico , Membrana Celular/inmunología , Membrana Celular/metabolismo , Progresión de la Enfermedad , Humanos , Evasión Inmune , Inmunoterapia , Lectinas/metabolismo , Mucina-1/química , Mucina-1/metabolismo , Metástasis de la Neoplasia , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Unión Proteica , Vacunología/métodos
3.
Chembiochem ; 23(13): e202100327, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34496130

RESUMEN

A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.


Asunto(s)
Ácidos Nucleicos , Azúcares , Carbohidratos/química , Lectinas/metabolismo , Polisacáridos/química
4.
Glycoconj J ; 39(5): 587-597, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36001188

RESUMEN

Lectins, carbohydrate-binding proteins, play important functions in all forms of life from bacteria and viruses to plants, animals, and humans, participating in cell-cell communication and pathogen binding. In an attempt to modify lectin functions, artificial lectin ligands were made usually as big dendrimeric or cluster multivalent glycomimetic structures. Here we synthesized a novel set of glycomimetic ligands through protection/deprotection multicomponent reactions (MCR) approach. Multivalent di-and tri-carbohydrate glycomimetics containing D-fructose, D-galactose, and D-allose moieties were prepared in 63-96% yield. MCR glycomimetics demonstrated different binding abilities for plant lectins Con A and UEA I, and human galectin-3. Information gained about the influence of molecule structure, multivalency and optical purity on the lectin binding ability can be used in lectin detection and sensitivity measurements to further facilitate understanding of carbohydrate recognition process.


Asunto(s)
Carbohidratos , Galactosa , Animales , Carbohidratos/química , Galactosa/química , Humanos , Ligandos , Estructura Molecular , Lectinas de Plantas
5.
European J Org Chem ; 2022(28)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36120398

RESUMEN

Fluorescently labelled alanine scan analogues of odorranalectin (OL), a cyclic peptide that exhibits lectin like properties, were screened for binding BSA-conjugated monosaccharides using an enzyme-linked lectin assay (ELLA). Results revealed that Lys5, Phe7, Tyr9, Gly12, Leu14, and Thr17 were crucial for binding BSA-L-fucose, BSA-D-galactose and BSA-N-acetyl-D-galactosamine. Notably, Ala substitution of Ser3, Pro4, and Val13 resulted in higher binding affinities compared to the native OL. The obtained data also indicated that Arg8 plays an important role in differentiation of binding for BSA-L-fucose/D-galactose from BSA-N-acetyl-D-galactosamine. The thermodynamics of binding of the selected alanine analogues was evaluated by isothermal titration calorimetry. Low to moderate binding affinities were determined for the tetravalent MUC1 glycopeptide and asialofetuin, respectively, and high for the fucose rich polysaccharide, fucoidan. The thermodynamic profile of interactions with asialofetuin exhibits shift to an entropy-driven mechanism compared to the fucoidan, which displayed an enthalpyentropy compensation, typically associated with the carbohydratelectin recognition process.

6.
Proc Natl Acad Sci U S A ; 116(8): 2837-2842, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718416

RESUMEN

Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N'-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.


Asunto(s)
Galectina 1/química , Galectina 3/química , Glicoconjugados/química , Polisacáridos/química , Amino Azúcares/química , Amino Azúcares/metabolismo , Sitios de Unión , Proteínas Sanguíneas , Adhesión Celular/genética , Proliferación Celular/genética , Galectina 1/genética , Galectina 3/genética , Galectinas , Humanos , Lactosa/química , Ligandos , Nanopartículas/química , Polisacáridos/genética
7.
Biochemistry ; 60(7): 547-558, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33560106

RESUMEN

Human macrophage galactose-type lectin (hMGL, HML, CD301, CLEC10A), a C-type lectin expressed by dendritic cells and macrophages, is a receptor for N-acetylgalactosamine α-linked to serine/threonine residues (Tn antigen, CD175) and its α2,6-sialylated derivative (sTn, CD175s). Because these two epitopes are among malignant cell glycan displays, particularly when presented by mucin-1 (MUC1), assessing the influence of the site and frequency of glycosylation on lectin recognition will identify determinants governing this interplay. Thus, chemical synthesis of the tandem-repeat O-glycan acceptor region of MUC1 and site-specific threonine glycosylation in all permutations were carried out. Isothermal titration calorimetry (ITC) analysis of the binding of hMGL to this library of MUC1 glycopeptides revealed an enthalpy-driven process and an affinity enhancement of an order of magnitude with an increasing glycan count from 6-8 µM for monoglycosylated peptides to 0.6 µM for triglycosylated peptide. ITC measurements performed in D2O permitted further exploration of the solvation dynamics during binding. A shift in enthalpy-entropy compensation and contact position-specific effects with the likely involvement of the peptide surroundings were detected. KinITC analysis revealed a prolonged lifetime of the lectin-glycan complex with increasing glycan valency and with a change in the solvent to D2O.


Asunto(s)
Lectinas Tipo C/química , Mucina-1/química , Secuencia de Aminoácidos , Antígenos de Carbohidratos Asociados a Tumores/química , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Calorimetría/métodos , Epítopos/metabolismo , Galactosa , Glicopéptidos/química , Glicopéptidos/metabolismo , Glicosilación , Humanos , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Mucina-1/metabolismo , Unión Proteica
8.
Histochem Cell Biol ; 156(3): 253-272, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34152508

RESUMEN

Wild-type lectins have distinct types of modular design. As a step to explain the physiological importance of their special status, hypothesis-driven protein engineering is used to generate variants. Concerning adhesion/growth-regulatory galectins, non-covalently associated homodimers are commonly encountered in vertebrates. The homodimeric galectin-7 (Gal-7) is a multifunctional context-dependent modulator. Since the possibility of conversion from the homodimer to hybrids with other galectin domains, i.e. from Gal-1 and Gal-3, has recently been discovered, we designed Gal-7-based constructs, i.e. stable (covalently linked) homo- and heterodimers. They were produced and purified by affinity chromatography, and the sugar-binding activity of each lectin unit proven by calorimetry. Inspection of profiles of binding of labeled galectins to an array-like platform with various cell types, i.e. sections of murine epididymis and jejunum, and impact on neuroblastoma cell proliferation revealed no major difference between natural and artificial (stable) homodimers. When analyzing heterodimers, acquisition of altered properties was seen. Remarkably, binding properties and activity as effector can depend on the order of arrangement of lectin domains (from N- to C-termini) and on the linker length. After dissociation of the homodimer, the Gal-7 domain can build new functionally active hybrids with other partners. This study provides a clear direction for research on defining the full range of Gal-7 functionality and offers the perspective of testing applications for engineered heterodimers.


Asunto(s)
Galectinas/metabolismo , Ingeniería de Proteínas , Línea Celular Tumoral , Galectinas/análisis , Galectinas/aislamiento & purificación , Humanos , Espectrometría de Masas
9.
Chemistry ; 27(1): 316-325, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955737

RESUMEN

Functional pairing between cellular glycoconjugates and tissue lectins like galectins has wide (patho)physiological significance. Their study is facilitated by nonhydrolysable derivatives of the natural O-glycans, such as S- and Se-glycosides. The latter enable extensive analyses by specific 77 Se NMR spectroscopy, but still remain underexplored. By using the example of selenodigalactoside (SeDG) and the human galectin-1 and -3, we have evaluated diverse 77 Se NMR detection methods and propose selective 1 H,77 Se heteronuclear Hartmann-Hahn transfer for efficient use in competitive NMR screening against a selenoglycoside spy ligand. By fluorescence anisotropy, circular dichroism, and isothermal titration calorimetry (ITC), we show that the affinity and thermodynamics of SeDG binding by galectins are similar to thiodigalactoside (TDG) and N-acetyllactosamine (LacNAc), confirming that Se substitution has no major impact. ITC data in D2 O versus H2 O are similar for TDG and LacNAc binding by both galectins, but a solvent effect, indicating solvent rearrangement at the binding site, is hinted at for SeDG and clearly observed for LacNAc dimers with extended chain length.


Asunto(s)
Galectinas , Resonancia Magnética Nuclear Biomolecular , Polisacáridos , Sitios de Unión , Óxido de Deuterio , Galectinas/metabolismo , Humanos , Isótopos , Ligandos , Polisacáridos/metabolismo , Unión Proteica , Selenio , Solventes
10.
Histochem Cell Biol ; 154(2): 135-153, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32335744

RESUMEN

The concept of biomedical significance of the functional pairing between tissue lectins and their glycoconjugate counterreceptors has reached the mainstream of research on the flow of biological information. A major challenge now is to identify the principles of structure-activity relationships that underlie specificity of recognition and the ensuing post-binding processes. Toward this end, we focus on a distinct feature on the side of the lectin, i.e. its architecture to present the carbohydrate recognition domain (CRD). Working with a multifunctional human lectin, i.e. galectin-3, as model, its CRD is used in protein engineering to build variants with different modular assembly. Hereby, it becomes possible to compare activity features of the natural design, i.e. CRD attached to an N-terminal tail, with those of homo- and heterodimers and the tail-free protein. Thermodynamics of binding disaccharides proved full activity of all proteins at very similar affinity. The following glycan array testing revealed maintained preferential contact formation with N-acetyllactosamine oligomers and histo-blood group ABH epitopes irrespective of variant design. The study of carbohydrate-inhibitable binding of the test panel disclosed up to qualitative cell-type-dependent differences in sections of fixed murine epididymis and especially jejunum. By probing topological aspects of binding, the susceptibility to inhibition by a tetravalent glycocluster was markedly different for the wild-type vs the homodimeric variant proteins. The results teach the salient lesson that protein design matters: the type of CRD presentation can have a profound bearing on whether basically suited oligosaccharides, which for example tested positively in an array, will become binding partners in situ. When lectin-glycoconjugate aggregates (lattices) are formed, their structural organization will depend on this parameter. Further testing (ga)lectin variants will thus be instrumental (i) to define the full range of impact of altering protein assembly and (ii) to explain why certain types of design have been favored during the course of evolution, besides opening biomedical perspectives for potential applications of the novel galectin forms.


Asunto(s)
Galectina 3/metabolismo , Animales , Proteínas Sanguíneas , Galectina 3/química , Galectina 3/genética , Galectinas , Glicoconjugados/química , Glicoconjugados/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Análisis por Matrices de Proteínas , Ingeniería de Proteínas , Termodinámica
12.
Glycoconj J ; 37(6): 657-666, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33001366

RESUMEN

Aberrant Mucin-1 (MUC1) glycosylation with the Thomsen-Friedenreich (TF) tumor-associated antigen (CD176) is a hallmark of epithelial carcinoma progression and poor patient prognosis. Recognition of TF by glycan-binding proteins, such as galectins, enables the pathological repercussions of this glycan presentation, yet the underlying binding specificities of different members of the galectin family is a matter of continual investigation. While Galectin-3 (Gal-3) recognition of TF has been well-documented at both the cellular and molecular level, Galectin-1 (Gal-1) recognition of TF has only truly been alluded to in cell-based platforms. Immunohistochemical analyses have purported Gal-1 binding to TF on MUC1 at the cell surface, however binding at the molecular level was inconclusive. We hypothesize that glycan scaffold (MUC1's tandem repeat peptide sequence) and/or multivalency play a role in the binding recognition of TF antigen by Gal-1. In this study we have developed a method for large-scale expression of Gal-1 and its histidine-tagged analog for use in binding studies by isothermal titration calorimetry (ITC) and development of an analytical method based on AlphaScreen technology to screen for Gal-1 inhibitors. Surprisingly, neither glycan scaffold or multivalent presentation of TF antigen on the scaffold was able to entice Gal-1 recognition to the level of affinity expected for functional significance. Future evaluations of the Gal-1/TF binding interaction in order to draw connections between immunohistochemical data and analytical measurements are warranted.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/inmunología , Galectina 1/genética , Mucina-1/genética , Antígenos de Carbohidratos Asociados a Tumores/genética , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/inmunología , Galectina 1/inmunología , Galectinas/genética , Galectinas/inmunología , Glicopéptidos/genética , Glicopéptidos/inmunología , Humanos , Mucina-1/inmunología , Unión Proteica/genética , Unión Proteica/inmunología
13.
J Org Chem ; 85(3): 1434-1445, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31799848

RESUMEN

One of the main barriers to explaining the functional significance of glycan-based changes in cancer is the natural epitope heterogeneity found on the surface of cancer cells. To help address this knowledge gap, we focused on designing synthetic tools to explore the role of tumor-associated glycans of MUC1 in the formation of metastasis via association with lectins. In this study, we have synthesized for the first time a MUC1-derived positional scanning synthetic glycopeptide combinatorial library (PS-SGCL) that vary in number and location of cancer-associated Tn antigen using the "tea bag" approach. The determination of the isokinetic ratios necessary for the equimolar incorporation of (glyco)amino acids mixtures to resin-bound amino acid was determined, along with developing an efficient protocol for on resin deprotection of O-acetyl groups. Enzyme-linked lectin assay was used to screen PS-SGCL against two plant lectins, Glycine max soybean agglutinin and Vicia villosa. The results revealed a carbohydrate density-dependent affinity trend and site-specific glycosylation requirements for high affinity binding to these lectins. Hence, PS-SGCLs provide a platform to systematically elucidate MUC1-lectin binding specificities, which in the long term may provide a rational design for novel inhibitors of MUC1-lectin interactions involved in tumor spread and glycopeptide-based cancer vaccines.


Asunto(s)
Glicopéptidos , Lectinas , Epítopos , Glicosilación , Mucina-1
14.
Glycobiology ; 29(8): 593-607, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31091305

RESUMEN

Discoveries on involvement of glycan-protein recognition in many (patho)physiological processes are directing attention to exploring the significance of a fundamental structural aspect of sugar receptors beyond glycan specificity, i.e., occurrence of distinct types of modular architecture. In order to trace clues for defining design-functionality relationships in human lectins, a lectin's structural unit has been used as source material for engineering custom-made variants of the wild-type protein. Their availability facilitates comparative analysis toward the stated aim. With adhesion/growth-regulatory human galectin-1 as example, the strategy of evaluating how changes of its design (here, from the homodimer of non-covalently associated domains to (i) linker-connected di- and tetramers and (ii) a galectin-3-like protein) affect activity is illustrated by using three assay systems of increasing degree of glycan complexity. Whereas calorimetry with two cognate disaccharides and array testing with 647 (glyco)compounds disclosed no major changes, galectin histochemical staining profiles of tissue sections that present natural glycome complexity revealed differences between wild-type and linker-connected homo-oligomers as well as between the galectin-3-like variant and wild-type galectin-3 for cell-type positivity, level of intensity at the same site and susceptibility for inhibition by a bivalent glycocompound. These results underscore the strength of the documented approach. Moreover, they give direction to proceed to (i) extending its application to other members of this lectin family, especially galectin-3 and (ii) then analyzing impact of architectural alterations on cell surface lattice formation and ensuing biosignaling systematically, considering the variants' potential for translational medicine.


Asunto(s)
Galectina 1/metabolismo , Procesamiento Proteico-Postraduccional , Amino Azúcares/metabolismo , Animales , Sitios de Unión , Epidídimo/metabolismo , Galectina 1/química , Humanos , Yeyuno/metabolismo , Lactosa/análogos & derivados , Lactosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Multimerización de Proteína
15.
Amino Acids ; 49(11): 1867-1883, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28894966

RESUMEN

The transformation from normal to malignant phenotype in human cancers is associated with aberrant cell-surface glycosylation. Thus, targeting glycosylation changes in cancer is likely to provide not only better insight into the roles of carbohydrates in biological systems, but also facilitate the development of new molecular probes for bioanalytical and biomedical applications. In the reported study, we have synthesized lectinomimics based on odorranalectin 1; the smallest lectin-like cyclic peptide isolated from the frog Odorrana grahami skin, and assessed the ability of these peptides to bind specific carbohydrates on molecular and cellular levels. In addition, we have shown that the disulfide bond found in 1 can be replaced with a lactam bridge. However, the orientation of the lactam bridge, peptides 2 and 3, influenced cyclic peptide's conformation and thus these peptides' ability to bind carbohydrates. Naturally occurring 1 and its analog 3 that adopt similar conformation in water bind preferentially L-fucose, and to a lesser degree D-galactose and N-acetyl-D-galactosamine, typically found within the mucin O-glycan core structures. In cell-based assays, peptides 1 and 3 showed a similar binding profile to Aleuria aurantia lectin and these two peptides inhibited the migration of metastatic breast cancer cell lines in a Transwell assay. Altogether, the reported data demonstrate the feasibility of designing lectinomimics based on cyclic peptides.


Asunto(s)
Sistemas de Liberación de Medicamentos , Lectinas , Neoplasias/metabolismo , Péptidos Cíclicos/síntesis química , Peptidomiméticos/síntesis química , Polisacáridos/metabolismo , Unión Competitiva , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fucosa/agonistas , Fucosa/metabolismo , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Lactamas/química , Lectinas/química , Lectinas/metabolismo , Células MCF-7 , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacología , Polisacáridos/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
16.
Biochemistry ; 54(29): 4462-74, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26129647

RESUMEN

A shift to short-chain glycans is an observed change in mucin-type O-glycosylation in premalignant and malignant epithelia. Given the evidence that human galectin-3 can interact with mucins and also weakly with free tumor-associated Thomsen-Friedenreich (TF) antigen (CD176), the study of its interaction with MUC1 (glyco)peptides is of biomedical relevance. Glycosylated MUC1 fragments that carry the TF antigen attached through either Thr or Ser side chains were synthesized using standard Fmoc-based automated solid-phase peptide chemistry. The dissociation constants (Kd) for interaction of galectin-3 and the glycosylated MUC1 fragments measured by isothermal titration calorimetry decreased up to 10 times in comparison to that of the free TF disaccharide. No binding was observed for the nonglycosylated control version of the MUC1 peptide. The most notable feature of the binding of MUC1 glycopeptides to galectin-3 was a shift from a favorable enthalpy to an entropy-driven binding process. The comparatively diminished enthalpy contribution to the free energy (ΔG) was compensated by a considerable gain in the entropic term. (1)H-(15)N heteronuclear single-quantum coherence spectroscopy nuclear magnetic resonance data reveal contact at the canonical site mainly by the glycan moiety of the MUC1 glycopeptide. Ligand-dependent differences in binding affinities were also confirmed by a novel assay for screening of low-affinity glycan-lectin interactions based on AlphaScreen technology. Another key finding is that the glycosylated MUC1 peptides exhibited activity in a concentration-dependent manner in cell-based assays revealing selectivity among human galectins. Thus, the presentation of this tumor-associated carbohydrate ligand by the natural peptide scaffold enhances its affinity, highlighting the significance of model studies of human lectins with synthetic glycopeptides.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/química , Galectina 3/química , Glicopéptidos/química , Mucina-1/química , Animales , Unión Competitiva , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Entropía , Humanos , Unión Proteica
17.
J Biol Chem ; 289(31): 21591-604, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24958723

RESUMEN

Although type IV collagen is heavily glycosylated, the influence of this post-translational modification on integrin binding has not been investigated. In the present study, galactosylated and nongalactosylated triple-helical peptides have been constructed containing the α1(IV)382-393 and α1(IV)531-543 sequences, which are binding sites for the α2ß1 and α3ß1 integrins, respectively. All peptides had triple-helical stabilities of 37 °C or greater. The galactosylation of Hyl(393) in α1(IV)382-393 and Hyl(540) and Hyl(543) in α1(IV)531-543 had a dose-dependent influence on melanoma cell adhesion that was much more pronounced in the case of α3ß1 integrin binding. Molecular modeling indicated that galactosylation occurred on the periphery of α2ß1 integrin interaction with α1(IV)382-393 but right in the middle of α3ß1 integrin interaction with α1(IV)531-543. The possibility of extracellular deglycosylation of type IV collagen was investigated, but no ß-galactosidase-like activity capable of collagen modification was found. Thus, glycosylation of collagen can modulate integrin binding, and levels of glycosylation could be altered by reduction in expression of glycosylation enzymes but most likely not by extracellular deglycosylation activity.


Asunto(s)
Colágeno Tipo IV/metabolismo , Integrina alfa2beta1/metabolismo , Integrina alfa3beta1/metabolismo , Melanoma/metabolismo , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Glicosilación , Humanos , Modelos Moleculares , Unión Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
J Biol Chem ; 288(31): 22871-9, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23779109

RESUMEN

ADAM proteases are implicated in multiple diseases, but no drugs based on ADAM inhibition exist. Most of the ADAM inhibitors developed to date feature zinc-binding moieties that target the active site zinc, which leads to a lack of selectivity and off target toxicity. Targeting secondary substrate binding sites (exosites) can potentially work as an alternative strategy for drug discovery; however, there are only a few reports of potential exosites in ADAM protease structures. In the study presented here, we utilized a series of TNFα-based substrates to probe ADAM10 and 17 interactions with its canonical substrate to identify the structural features that determine ADAM protease substrate specificity. We found that noncatalytic domains of ADAM17 did not directly bind the substrates used in the study but affected the binding nevertheless, most likely because of steric hindrance. Additionally, noncatalytic domains of ADAM17 affected the size/shape of the carbohydrate-binding pocket contained within the catalytic domain of ADAM17. This suggests that noncatalytic domains of ADAM17 play a role in substrate specificity and might help explain differences in substrate repertoires of ADAM17 and its closest homologue, ADAM10. We also addressed the question of which substrate features can affect ADAM protease specificity. We found that all ADAM proteases tested (i.e., ADAM10, 12, and 17) significantly decreased activity when the TNFα-derived sequence was induced into α-helical conformation, suggesting that conformation plays a role in determining ADAM protease substrate specificity. These findings can help in the discovery of ADAM isoform- and substrate-specific inhibitors.


Asunto(s)
Proteínas ADAM/metabolismo , Proteínas ADAM/química , Proteína ADAM17 , Secuencia de Aminoácidos , Dominio Catalítico , Dicroismo Circular , Humanos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Especificidad por Sustrato
19.
Anal Biochem ; 449: 68-75, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24361716

RESUMEN

ADAM17 (a disintegrin and metalloprotease 17) is believed to be a tractable target in various diseases, including cancer and rheumatoid arthritis; however, it is not known whether glycosylation of ADAM17 expressed in healthy cells differs from that found in diseased tissue and, if so, whether glycosylation affects inhibitor binding. We expressed human ADAM17 in mammalian and insect cells and compared their glycosylation, substrate kinetics, and inhibition profiles. We found that ADAM17 expressed in mammalian cells was more heavily glycosylated than its insect-expressed analog. To determine whether differential glycosylation modulates enzymatic activity, we performed kinetic studies with both ADAM17 analogs and various TNFα-based substrates. The mammalian form of ADAM17 exhibited 10- to 30-fold lower kcat values than the insect analog, while the KM was unaffected, suggesting that glycosylation of ADAM17 can potentially play a role in regulating enzyme activity in vivo. Finally, we tested ADAM17 forms for inhibition by several well-characterized inhibitors. Active-site zinc-binding small molecules did not exhibit differences between the two ADAM17 analogs, while a non-zinc-binding exosite inhibitor of ADAM17 showed significantly lower potency toward the mammalian-expressed analog. These results suggest that glycosylation of ADAM17 can affect cell signaling in disease and might provide opportunities for therapeutic intervention using exosite inhibitors.


Asunto(s)
Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Proteína ADAM17 , Secuencia de Aminoácidos , Animales , Clonación Molecular , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glicosilación , Células HEK293 , Humanos , Cinética , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Molecules ; 19(6): 8571-88, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24959683

RESUMEN

Matrix metalloproteinases (MMP) 2 and 9, the gelatinases, have consistently been associated with tumor progression. The development of gelatinase-specific probes will be critical for identifying in vivo gelatinoic activity to understand the molecular role of the gelatinases in tumor development. Recently, a self-assembling homotrimeric triple-helical peptide (THP), incorporating a sequence from type V collagen, with high substrate specificity to the gelatinases has been developed. To determine whether this THP would be suitable for imaging protease activity, 5-carboxyfluorescein (5FAM) was conjugated, resulting in 5FAM3-THP and 5FAM6-THP, which were quenched up to 50%. 5FAM6-THP hydrolysis by MMP-2 and MMP-9 displayed kcat/KM values of 1.5 × 104 and 5.4 × 103 M-1 s-1, respectively. Additionally 5FAM6-THP visualized gelatinase activity in gelatinase positive HT-1080 cells, but not in gelatinase negative MCF-7 cells. Furthermore, the fluorescence in the HT-1080 cells was greatly attenuated by the addition of a MMP-2 and MMP-9 inhibitor, SB-3CT, indicating that the observed fluorescence release was mediated by gelatinase proteolysis and not non-specific proteolysis of the THPs. These results demonstrate that THPs fully substituted with fluorophores maintain their substrate specificity to the gelatinases in human cancer cells and may be useful in in vivo molecular imaging of gelatinase activity.


Asunto(s)
Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Péptidos/farmacocinética , Tomografía Óptica/métodos , Línea Celular Tumoral , Colágeno Tipo V/química , Fluoresceínas/química , Fluorescencia , Colorantes Fluorescentes/química , Humanos , Células MCF-7 , Microscopía Confocal , Microscopía Fluorescente , Péptidos/síntesis química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA